首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C,D都是n阶矩阵,r(CA+DB)=n. 设ξ1,ξ2,ξ3,…,ξr与η1,η2,η3,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,ξ3,…,ξr与η1,η2,η3,…,ηs线性无关。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n. 设ξ1,ξ2,ξ3,…,ξr与η1,η2,η3,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,ξ3,…,ξr与η1,η2,η3,…,ηs线性无关。
admin
2021-11-25
26
问题
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.
设ξ
1
,ξ
2
,ξ
3
,…,ξ
r
与η
1
,η
2
,η
3
,…,η
s
分别为方程组AX=0与BX=0的基础解系,证明:ξ
1
,ξ
2
,ξ
3
,…,ξ
r
与η
1
,η
2
,η
3
,…,η
s
线性无关。
选项
答案
因为[*]只有零解,从而方程组AX=0与BX=0没有非零的公共解,故ξ
1
,ξ
2
,ξ
3
,…,ξ
r
与η
1
,η
2
,η
3
,…,η
s
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/Ppy4777K
0
考研数学二
相关试题推荐
设f(x)连续,且,则().
设矩阵B的列向量线性无关,且BA=C,则()。
函数f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1)=1,证明:(Ⅰ)存在c∈(0,1),使得f(c)==2。
设A,B为n阶矩阵,下列命题成立的是().
设线性方程组已知(1,一1,1,一1)T是该方程组的一个解,试求(Ⅰ)方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;(Ⅱ)该方程组满足x2=x3的全部解。
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,-4,0)T,则方程组A*X=0的基础解系为().
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是()
随机试题
试述企业分销渠道设计的基本目标。
下列加点字释义正确的一组是()
下列不符合静脉性充血的描述是
治疗窦性心动过速药物治疗应首选
下列计量尺度中,计量结果只能比较大小,不能进行加、减、乘、除等数学运算的是()。
J公司年度销售目标(计划)为6亿元,预计年度周转率为15次,由于市场需求量下降,一季度实现销售额每月平均4000万元,预计4月份销售额为3760万元。请计算该公司4月初库存额应调整为多少?
《中华人民共和国合同法》中关于采用数据电文形式订立合同的,对于未指定特定系统接收数据电文的,到达时间的规定是________。
简答校本课程开发的条件。
以下是在一场关于“安乐死是否应合法化”的辩论中正反方辩手的发言:正方:反方辩友反对“安乐死合法化”的根据主要是在什么条件下方可实施安乐死的标准不易掌握,这可能会给医疗事故甚至谋杀造成机会,使一些本来可以挽救的生命失去最后的机会。诚然,这样的风险是存在的。
ThelargestandsmalleststatesoftheUnitedStatesare______.
最新回复
(
0
)