首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)一f(ξ)=f(2)一2f(1).
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)一f(ξ)=f(2)一2f(1).
admin
2020-03-10
69
问题
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)一f(ξ)=f(2)一2f(1).
选项
答案
令[*] 则φ(x)在[1,2]上连续,在(1,2)内可导,且φ(1)=φ(2)=f(2)一f(1), 由罗尔定理,存在ξ∈(1,2),使得φ’(ξ)=0, 而φ’(x)=[*],故ξf’(ξ)一f(ξ)=f(2)一2f(1).
解析
由xf’(x)一f(x)=f(2)一2f(1)得
从而
=0,辅助函数为φ(x)=
转载请注明原文地址:https://kaotiyun.com/show/PuD4777K
0
考研数学三
相关试题推荐
设A,B均为二阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为()
设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆;②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;④A一E恒可逆。上述命题中,正确的个数为()
设A和B都是n阶矩阵,则必有()
设向量组a1,a2线性无关,向量组a1+b,a2+b线性相关,证明:向量b能由向量组a1,a2线性表示。
设常数k>0,函数f(x)=lnx一+k在(0,+∞)内零点个数为()
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,bn,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
已知A,B为三阶非零矩阵,且A=β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组βx=0的三个解向量,且Ax=β3有解。求a,b的值;
根据以往经验,某种电器元件的寿命服从均值为100小时的指数分布。现随机地取16只,设它们的寿命是相互独立的。求这16只元件的寿命的总和大于1920小时的概率。
假设X是在区间(0,1)内取值的连续型随机变量,而Y=1一X。已知P{x≤0.29}=0.75,则满足P{Y≤k}=0.25的常数k=___________。
设某商品的需求量D和供给量S各自对价格P的函数为且P是时间t的函数,并满足方程其中a,b,k为正的常数.求:需求量与供给量相等时的均衡价格PC;
随机试题
使用标准磨口仪器时错误的做法是()。
Aresomepeoplebornclever,andothersbornstupid?Orisintelligencedevelopedbyourenvironmentandourexperiences?Strang
婴幼儿患化脓性脑膜炎时,颅内压增高的体征为()。
除法律、法规另有规定外,划拨土地没有使用期限的限制,但未经许可不得进行转让、出租、抵押等经营活动。()
(2003年考试真题)甲公司为有限责任公司。根据公司法律制度的规定,下列各项中,属于甲公司解散事由的有()。
下列有关房屋附属设施的说法符合契税规定的有()。
康有为、梁启超“公车上书”,时逢当时一个不平等条约签订,这个条约是()。
交换积分次序并计算∫0adx∫0xdy(a>0).
A、Sheisusedtoflying.B、Shehasneverfeltboredduringflying.C、Shelikesthein-flightmeals.D、Sheistiredofflying.A由
【B1】【B11】
最新回复
(
0
)