首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)一f(ξ)=f(2)一2f(1).
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)一f(ξ)=f(2)一2f(1).
admin
2020-03-10
37
问题
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)一f(ξ)=f(2)一2f(1).
选项
答案
令[*] 则φ(x)在[1,2]上连续,在(1,2)内可导,且φ(1)=φ(2)=f(2)一f(1), 由罗尔定理,存在ξ∈(1,2),使得φ’(ξ)=0, 而φ’(x)=[*],故ξf’(ξ)一f(ξ)=f(2)一2f(1).
解析
由xf’(x)一f(x)=f(2)一2f(1)得
从而
=0,辅助函数为φ(x)=
转载请注明原文地址:https://kaotiyun.com/show/PuD4777K
0
考研数学三
相关试题推荐
已知向量组的秩为2,则t=_________。
已知A=,A*是A的伴随矩阵,若r(A*)=1,则a=()
设函数z=z(x,y)由方程z=e2x-3z+2y确定,则=__________。
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明:如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程=e2xz,求f(u)。
设随机变量X和Y相互独立,X服从正态分布N(μ,σ2),y在区间[-2π,2π]上服从均匀分布,求随机变量Z=X-Y,的概率分布,并将结果化为标准正态分布的形式。
设求的值;
设(I)函数f(x)在[0,+∞)上连续,且满足0≤f(x)≤ex-1;(Ⅱ)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别交于点P2和P1;(Ⅲ)由曲线y=f(x)与直线MN及x轴围成的平面图形的面积S恒等于线段P1P2之
设f(x)在区间[a,b]上可导,且满足求证:至少存在一点ξ∈(a,b)使得f(ξ)=-f’(ξ).
随机试题
简述民事责任的概念与特征。
在中性环境下无抗菌作用,而在酸性环境呈抑菌或杀菌作用的抗结核药物是
瘀滞型肠痈治则为()
16PF、的适用范围是()。
掌握知识与发展能力之间存在“剪刀差”。()
观察过去五年广东的发展路径,可以________地看到当地政府、企业、民众从歧路彷徨到艰难转型的过程。要触动既得利益,要牺牲眼前利益,不仅需要勇气,更需要智慧。要________已有的“获利”路径,要________用惯了的政策“拐杖”,不仅需要“自我革命
TheElNinohas______affectedtheregionalweatherandtemperatureovermuchofthetropics,sub-tropicsandsomemid-latitude
在1945年提议战后有必要建立一个普遍性的国际组织(即后来的联合国),以维持国际和平与安全的国家不包括()。
设矩阵A=(a1,a2,a3,a4)经行初等变换化为矩阵B=(β1,β2,β3,β4),且a1,a2,a3线性无关,a1,a2,a3,a4线性相关,则().
Thepoliceforcedtheirwayintotheroom,onlytofindallthevaluablesgone.
最新回复
(
0
)