首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程缉Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为 x=k1η1+…+kn-r+1ηn-r+1,其中k1+…+kn-r+1=1。
设非齐次线性方程缉Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为 x=k1η1+…+kn-r+1ηn-r+1,其中k1+…+kn-r+1=1。
admin
2019-01-19
100
问题
设非齐次线性方程缉Ax=b的系数矩阵的秩为r,η
1
,…,η
n-r+1
是它的n—r+1个线性无关的解。试证它的任一解可表示为
x=k
1
η
1
+…+k
n-r+1
η
n-r+1
,其中k
1
+…+k
n-r+1
=1。
选项
答案
设x为Ax=b的任一解,由题设知η
1
,η
2
,…,η
n-r+1
线性无关且均为Ax=易的解。 取ξ
1
=η
2
一η
1
,ξ
2
=η
3
一η
1
,…,ξ
n-r
=η
n-r+1
一η
1
,根据线性方程组解的结构,它们均为对应齐次方程Ax=0的解。 下面用反证法证: 设ξ
1
,ξ
2
,…,ξ
n-r
线性相关,则存在不全为零的数l
1
,l
2
,…,l
n-r
,使得 l
1
ξ
1
+l
2
ξ
2
+…+l
n-r
ξ
n-r
=0, 即l
1
(η
2
一η
1
)+l
2
(η
3
一η
1
)+…+l
n-r
(η
n-r+1
一η
1
)=0, 也即 一(l
1
+l
2
+…+l
n-r
)η
1
+l
2
η
2
+l
3
η
3
+…+l
n-r
η
n-r+1
=0。 由η
1
,η
2
,…,η
n-r+1
线性无关知一(l
1
+l
2
+…+l
n-r
)=l
1
=l
2
=…=l
n-r
=0, 这与l
1
,l
2
,…,l
n-r
不全为零矛盾,故假设不成立。因此ξ
1
,ξ
2
,…,ξ
n-r
线性无关,是Ax=0的基础解系。 由于x,η
1
均为Ax=b的解,所以x-η
1
为Ax=0的解,因此x一η
1
可由ξ
1
,ξ
2
,…,ξ
n-r
线性表示,设 X一η
1
=k
2
ξ
1
+k
3
ξ
2
+…+k
n-r+1
ξ
n-r
, =k
2
(η
2
一η
1
)+k3(η
3
一η
1
)+…+k
n-r+1
(η
n-r+1
一η
1
), 则 x=η
1
(1一k
2
一k
3
一…一k
n-r+1
)+k
2
η
2
+k
3
η
3
+…+k
n-r+1
η
n-r+1
, 令k
1
=1一k
2
一k
3
一…一k
n-r+1
,则 k
1
+k
2
+k
3
+…+k
n-r+1
=1,从而x=k
1
η
1
+k
2
η
2
+…+k
n-r+1
η
n-r+1
恒成立。
解析
转载请注明原文地址:https://kaotiyun.com/show/SbP4777K
0
考研数学三
相关试题推荐
设随机变量X1,…,Xn,Xn+1独立同分布,且P(X1=1)=p,P(X1=0)=1-p,记
设函数z=f(χ,y)在点(1,1)处可微,且f(1,1)=1,=3,φ(χ)=f(χ,f(χ,χ)).求=_______.
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1,2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组是齐次线性方程组Bχ=0的基础解系.
设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为_______.
设A是三阶实对称矩阵,特征值是1,0,一2,矩阵A的属于特征值1与一2的特征向量分别是(1,2,1)T与(1,一1,a)T,求Ax=0的通解.
由曲线y=x(x一1)(2一x)与x轴围成平面图形的面积为().
设α1,α2,α3均为3维列向量,记矩阵A=[一α1,2α2,α3],B=[α1+α2,α1—4α3,α2+2α3],如果行列式|A|=一2,则行列式|B|=__________.
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2):1,则f"’(2)=_________.
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T都是齐次线性方程组AX=0的解.求作正交矩阵Q和对角矩阵A,使得QTAQ=A.
已知y=lnlnlnx,则y’=________。
随机试题
根据确定控制标准Z值的方法,可以将控制过程分为()。
患者胃脘胀痛拒按,伴嗳腐吞酸,大便不爽,苔厚腻,脉滑,根据子母补泻法,治疗宜选的穴位是
多数急性心肌梗死患者最早出现和最突出的症状是
分清品种、数量、坎级、返利额度等在制定返利政策时是考虑()的实例。
计算机中有寄存器、Cache、主存和辅存等不同类型的存储部件,其中【】的存取速度最快。
利用查询设计器建立查询时可以指定查询去向,错误的操作方式是()。
在线性表的多种存储结构中,最简单的方法是【】。
Woman:Hereyouare.Doitbysixo’clock,OK?Man:Bysixo’clock?Givemeabreak.I’mnotasuperman.Question:Whatdoesthe
OrMaybeMajorinCompLit?Let’snotexaggerate:scienceandengineeringarenotthenewCompLitorphilosophy,thoseunde
Whatproblemdoesthewomanhave?
最新回复
(
0
)