首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程缉Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为 x=k1η1+…+kn-r+1ηn-r+1,其中k1+…+kn-r+1=1。
设非齐次线性方程缉Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为 x=k1η1+…+kn-r+1ηn-r+1,其中k1+…+kn-r+1=1。
admin
2019-01-19
65
问题
设非齐次线性方程缉Ax=b的系数矩阵的秩为r,η
1
,…,η
n-r+1
是它的n—r+1个线性无关的解。试证它的任一解可表示为
x=k
1
η
1
+…+k
n-r+1
η
n-r+1
,其中k
1
+…+k
n-r+1
=1。
选项
答案
设x为Ax=b的任一解,由题设知η
1
,η
2
,…,η
n-r+1
线性无关且均为Ax=易的解。 取ξ
1
=η
2
一η
1
,ξ
2
=η
3
一η
1
,…,ξ
n-r
=η
n-r+1
一η
1
,根据线性方程组解的结构,它们均为对应齐次方程Ax=0的解。 下面用反证法证: 设ξ
1
,ξ
2
,…,ξ
n-r
线性相关,则存在不全为零的数l
1
,l
2
,…,l
n-r
,使得 l
1
ξ
1
+l
2
ξ
2
+…+l
n-r
ξ
n-r
=0, 即l
1
(η
2
一η
1
)+l
2
(η
3
一η
1
)+…+l
n-r
(η
n-r+1
一η
1
)=0, 也即 一(l
1
+l
2
+…+l
n-r
)η
1
+l
2
η
2
+l
3
η
3
+…+l
n-r
η
n-r+1
=0。 由η
1
,η
2
,…,η
n-r+1
线性无关知一(l
1
+l
2
+…+l
n-r
)=l
1
=l
2
=…=l
n-r
=0, 这与l
1
,l
2
,…,l
n-r
不全为零矛盾,故假设不成立。因此ξ
1
,ξ
2
,…,ξ
n-r
线性无关,是Ax=0的基础解系。 由于x,η
1
均为Ax=b的解,所以x-η
1
为Ax=0的解,因此x一η
1
可由ξ
1
,ξ
2
,…,ξ
n-r
线性表示,设 X一η
1
=k
2
ξ
1
+k
3
ξ
2
+…+k
n-r+1
ξ
n-r
, =k
2
(η
2
一η
1
)+k3(η
3
一η
1
)+…+k
n-r+1
(η
n-r+1
一η
1
), 则 x=η
1
(1一k
2
一k
3
一…一k
n-r+1
)+k
2
η
2
+k
3
η
3
+…+k
n-r+1
η
n-r+1
, 令k
1
=1一k
2
一k
3
一…一k
n-r+1
,则 k
1
+k
2
+k
3
+…+k
n-r+1
=1,从而x=k
1
η
1
+k
2
η
2
+…+k
n-r+1
η
n-r+1
恒成立。
解析
转载请注明原文地址:https://kaotiyun.com/show/SbP4777K
0
考研数学三
相关试题推荐
(01年)求二重积的值,其中D是由直线y=χ,y=-1及χ=1围成的平面区域.
(93年)设随机变量X的密度函数为φ(χ),且φ(-χ)-φ(χ),F(χ)为X的分布函数,则对任意实数a,有【】
(1)设系统由100个相互独立的部件组成.运行期间每个部件损坏的概率为0.1.至少有85个部件是完好时系统才能正常工作,求系统正常工作的概率.(Ф()=0.9522)(2)如果上述系统由竹个部件组成,至少有80%的部件完好时系统才能正常工作.问n
计算二重积分=_______,其中D是由直线y=2,y=χ和双曲线χy=1所围成的平面区域.
若连续函数满足关系式f(χ)=+ln2则f(χ)等于【】
设3阶矩阵A与B相似,λ=1,λ=一2是矩阵A的两个特征值,且矩阵B的行列式|B|=1,则行列式|A*+E|=________.
计算二重积分I=|3x+4y|dxdy,其中积分区域D={(x,y)|x2+y2≤1}.
设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy一y=0和ez一xz=0所确定,求.
设α1,α2,α3,β1,β2都是4维列向量,且4阶行列式|α1,α2,α3,β1|=m,|α1,α2,β2,α3|=n,则4阶行列式|α3,α2,α1,β1+β2|等于()
随机试题
如果企业闲置设备很多,管理效率低下,则表明固定资产周转率
在流行病学研究中,选入到研究中的研究对象与没有被选入者特征上的差异所造成的系统误差是
关于Shift阿尔辛蓝地衣红染色法的叙述,错误的是
半数以上股份被另一公司持有并受其控制的公司为()。
1998年3月1日,甲将自己的一套住房出租给乙,双方签订房屋租赁合同并约定租期22年。2017年3月1日,甲又将该房屋抵押给丙,并办理了抵押登记。2018年3月1日,丙行使抵押权拍卖该房屋,丁以100万元的价格购得该套房屋并办理了过户手续。现在,丁要求乙搬
本票可以是远期的,远期本票像远期汇票一样也存在承兑行为。()
根据凯恩斯的流动性偏好理论,决定货币需求的动机包括()。Ⅰ.交易动机Ⅱ.预防动机Ⅲ.储蓄动机Ⅳ.投机动机
行为锚定等级评价是一种()。这种绩效考核最大的缺点在于()。
--Doyouknowwhoinvented______telephone?--No,Butitisreally______telephone?
Whatdoesyourdoctorusuallyadviseyoutodowhenyou’requitesick?To______.Whatwillkeepasickmanworkingwhenhesh
最新回复
(
0
)