设四阶矩阵A=(α1,α2,α3,α4),其中α1,α2,α3线性无关,而α4=2α1一α2+α3,则r(A*)为( ).

admin2021-01-14  21

问题 设四阶矩阵A=(α1,α2,α3,α4),其中α1,α2,α3线性无关,而α4=2α1一α23,则r(A*)为(    ).

选项 A、0
B、1
C、2
D、3

答案B

解析 由α1,α2,α3线性无关,而α4=2α1一α23得向量组的秩为3,于是r(A)=3,
故r(A*)=1,选(B).
转载请注明原文地址:https://kaotiyun.com/show/Px84777K
0

相关试题推荐
最新回复(0)