首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在线性空间P[x]3中,下列向量组是否为一个基? Ⅰ:1+x,x+x2,1+x3,2+2x+x2+x3.
在线性空间P[x]3中,下列向量组是否为一个基? Ⅰ:1+x,x+x2,1+x3,2+2x+x2+x3.
admin
2020-11-13
52
问题
在线性空间P[x]
3
中,下列向量组是否为一个基?
Ⅰ:1+x,x+x
2
,1+x
3
,2+2x+x
2
+x
3
.
选项
答案
设k
1
(1+x)+k
2
(x+x
2
)+k
3
(1+x
3
)+k
4
(2+2x+x
2
+x
3
)=0,得(k
1
+k
3
+2k
4
)+(k
1
+k
2
+2k
4
)x+(k
2
+k
4
)x
2
+(k
3
+k
4
)x
3
=0. 因1,x,x
2
,x
3
线性无关,则有[*] 故向量组Ⅰ线性相关,不是基.
解析
转载请注明原文地址:https://kaotiyun.com/show/Pxx4777K
0
考研数学三
相关试题推荐
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1。试证必存在ξ∈(0,3),使f’(ξ)=0。
[*]
已知线性方程组(1)a,b为何值时,方程组有解?(2)在方程组有解时,求出方程组的导出组的一个基础解系,并用它表示方程组的全部解.
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设E为四阶单位矩阵,且B=(E+A)-1(E-A)则(E+B)-1=_____________.
[2010年]设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则().
[2008年]设银行存款的年利率为r=0.05,并依年复利计算,某基金会希望通过存款A万元,实现第一年提取19万元,第二年提取28万元,…,第n年提取(10+9n)万元,并按此规律一直提取下去,问A至少应为多少万元?
随机试题
财务处小王需要使用Word设计《经费联审结算单》模板,以提高财务审核效率。请根据考生文件夹下“Word素材1.docx”和“Word素材2.xlsx”文件,按照如下要求完成制作任务:将“科研经费报账基本流程”中的四个步骤改用“垂直流程”SmartArt
由捅杆+丢手接头+拉簧活门+Y341一114C封隔器+Y341一114C封隔器+635一Ⅲ三孔排液器+丝堵组成的潜油电泵井分层采油管柱可实现()作业。
下列关于腹股沟斜疝的处理中不正确的是
A.甲状腺次全切除B.β受体阻滞剂C.放射性131I治疗D.正规硫脲类或咪唑类治疗E.小剂量硫脲类或咪唑类治疗对于下列Graves病人,上述何种治疗方法为最佳选择
学生是权利的主体,享有法律所规定的各项______。
()年《中华人民共和国教师法》,首次以法律形式规定“国家实行教师资格制度”。
学校可以根据学生的基础分层次开设重点班。()
“在实际上受党委直接领导”,是指从地方公安机关与同级地方党委的关系来说,公安机关必须置于党委的实际领导之下。()
管理信息系统开发过程应该遵循信息开发系统的【】,但也有其特殊需要考虑的问题。
有如下程序:#includeusingnamespacestd;classTestClassl{public:TestClass10{cout
最新回复
(
0
)