首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,3,5,—1)T,α2=(2,7,a,4)T,α3=(5,17,—1,7)T. ①若α1,α2,α3线性相关,求a. ②当a=3时,求与α1,α2,α3都正交的非零向量α4. ③设a=3,α4是与α1,α2,α3都正交的非零向量,证明α1,α
设α1=(1,3,5,—1)T,α2=(2,7,a,4)T,α3=(5,17,—1,7)T. ①若α1,α2,α3线性相关,求a. ②当a=3时,求与α1,α2,α3都正交的非零向量α4. ③设a=3,α4是与α1,α2,α3都正交的非零向量,证明α1,α
admin
2019-08-11
64
问题
设α
1
=(1,3,5,—1)
T
,α
2
=(2,7,a,4)
T
,α
3
=(5,17,—1,7)
T
.
①若α
1
,α
2
,α
3
线性相关,求a.
②当a=3时,求与α
1
,α
2
,α
3
都正交的非零向量α
4
.
③设a=3,α
4
是与α
1
,α
2
,α
3
都正交的非零向量,证明α
1
,α
2
,α
3
,α
4
可表示任何一个4维向量.
选项
答案
①α
1
,α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
)<3. (α
1
,α
2
,α
3
)= [*] 得a=—3. ②与α
1
,α
2
,α
3
都正交的非零向量即齐次方程组 [*] 的非零解,解此方程组: [*] 解得α
4
=c(19,—6,0,1)
T
,c≠0. ③只用证明α
1
,α
2
,α
3
,α
4
线性无关,此时对任何4维向量α,有α
1
,α
2
,α
3
,α
4
,α线性相关, 从而α可以用α
1
,α
2
,α
3
,α
4
线性表示. 方法一 由①知,a=3时,α
1
,α
2
,α
3
线性无关,只用证明α
4
不能用α
1
,α
2
,α
3
线性表示. 用反证法,如果α
4
能用α
1
,α
2
,α
3
线性表示,设(4=c
1
α
1
+c
2
α
2
+c
3
α
3
,则 (α
4
,α
4
)=(α
4
,c
1
α
1
+c
2
α
2
+c
3
α
3
)=c
1
(α
4
,α
1
)+c
2
(α
4
,α
2
)+c
3
(α
4
,α
3
) =0. 得α
4
=0,与α
4
是非零向量矛盾. 方法二 计算行列式 | α
1
,α
2
,α
3
,α
4
| [*] 于是α
1
,α
2
,α
3
,α
4
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/Q0J4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn是来自总体X的简单随机样本,其均值和方差分别为与S2,且X~B(1,p),0<p<1.试求:的概率分布;
已知函数z=u(x,y)eax+by,其中u(x,y)具有二阶连续偏导数,且.
计算下列各题:方程y-yey=1确定y=y(x),求y".
计算二重积分,其中D是曲线y=lnx与y=2lnx以及直线x=e所围成的平面区域.
曲线y=lnx上与直线x+y=1垂直的切线方程为___________.
已知ξ1=(一3,2,0)T,ξ2=(一1,0,一2)T是方程组的两个解,则此方程组的通解是___________.
已知方程组总有解,则λ应满足___________.
设随机变量X和Y的联合密度为求条件概率P{Y>1|X<0.5}.
设A为n阶方阵,秩(A)=r<n,且满足A2=2A,证明:A必相似于对角矩阵.
随机试题
工程投资额在30万元以下或者建筑面积在300m2以下的建筑工程,也必须申请办理施工许可证。()
阴邪盛而导致的实寒证,其治疗方法是
A.微小病变B.毛细血管内增生性肾炎C.系膜增生性肾炎D.新月体肾炎E.系膜毛细血管性肾炎急进性肾炎常见于
建设工程项目的设计任务,必须以公开招标方式发包的是()。
资本配置的基本步骤包括()。
下列关于生物进化的叙述正确的是()
Joyinlivingcomesfromhavingfineemotions,trustingthem,givingthemthe【E1】f______ofabirdintheopen.Joyinlivingcan
Itallstartedin1950,whenpeoplebegantobuildtheirhousesonthe______oftheircities.
下面不属于数据管理技术发展过程中人工管理阶段的特点的是
在下列横线处应添加的语句是()。classBase{public:voidfun(){cout<<"Base::fun"<<end1;}};class:Derived:publicBase{public:
最新回复
(
0
)