首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有线性方程组 设a1=a3=k,a2=a4=-k(k≠0),且已知β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通解.
设有线性方程组 设a1=a3=k,a2=a4=-k(k≠0),且已知β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通解.
admin
2018-07-26
110
问题
设有线性方程组
设a
1
=a
3
=k,a
2
=a
4
=-k(k≠0),且已知β
1
=(-1,1,1)
T
,β
2
=(1,1,-1)
T
是该方程组的两个解,写出此方程组的通解.
选项
答案
当a
1
=a
3
=k,a
2
=a
4
=-k(k≠0)时,方程组为 [*] 因为[*]=-2k≠0,故r(A)=r([*])=2,从而原方程组相容且它的导出方程组的基础解系应含有3-2=1个解向量. 因为β
1
,β
2
是原非齐次方程组的两个解,故 ξ=β
1
-β
2
[*] 是对应齐次方程组的解,且ξ≠0,故ξ是导出方程组的基础解系. 于是原非齐次方程组的通解为 X=β
1
+cξ [*] (c为任意常数)
解析
转载请注明原文地址:https://kaotiyun.com/show/tTW4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,λ=2是A的一个特征值,则2A2-3A+5E必有特征值______.
已知A=,其中a1,a2,…,an两两不等.证明与A可交换的矩阵只能是对角矩阵.
设f(x)在[a,+∞)有连续导数,且f’(x)>k>0在(a,+∞)上成立,又f(a)<0,其中k是一个常数.求证:方程f(x)=0在内有且仅有一个实根.
设A是n阶矩阵,Am=0,证明E-A可逆.
已知A=,矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵,则X=______.
已知β可用α1,α2,…,αm线性表示,但不能用α1,α2,…,αm-1表出,试判断:(Ⅰ)αm能否用α1,α2,…,αm-1,β线性表示;(Ⅱ)αm能否用α1,α2,…,αm-1线性表示,并说明理由.
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表出,则下列命题正确的是
证明α1,α2,…,αs(其中α1≠0)线性相关的充分必要条件是存在一个αi(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
(12年)设函数f(χ)=(eχ-1)(e2χ-2)…(enχ-n),其中n为正整数,则f′(0)=【】
随机试题
我国消费税的税目共有_____。
在两岸关系和平发展中,2008年12月15日
女性生殖器结核最先累及的部位是
患儿,男性,9个月。单纯羊乳喂养。为预防营养性巨幼细胞性贫血,护士可向家长推荐的富含叶酸的食品有
张三系某黑社会性质组织首领,向郭某放高利贷200万元,期满后一年仍不归还,本金利息已至400万元,郭某仅答应最多偿还250万元,其余数额不认。张三于是找到其骨干成员李四,让其去追回其余债款,并叮嘱不要有过激行为。李四找到郭某,发生口角后厮打起来,李四拔起手
根据《刑事诉讼法》,自诉人在刑事诉讼中有权()。
(2018年)甲公司以公允价值模式对投资性房地产进行计量。2017年到2018年相关资料如下:资料一:2017年3月1日,甲公司将原作为固定资产核算的写字楼,以经营租赁的方式租给乙公司,租期18个月,当日该写字楼的公允价值16000万元,账面原值15
参加工作后,你的直接领导给了你一个工作安排,一个你的非直接领导也给了你一个工作安排,而第二个工作安排更为可行,你该怎么办?
In17thcentury,______isthegreatestdiaristinEngland.
ARoadAccidentItwasraining(11)asIwaswalkingupthehilltowardsthestationatsixo’clockonaSaturdaymorning.
最新回复
(
0
)