首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组554有3个线性无关的解, 证明方程组系数矩阵A的秩r(A)=2;
已知非齐次线性方程组554有3个线性无关的解, 证明方程组系数矩阵A的秩r(A)=2;
admin
2016-03-05
91
问题
已知非齐次线性方程组
554有3个线性无关的解,
证明方程组系数矩阵A的秩r(A)=2;
选项
答案
设α
1
,α
2
,α
3
是方程组Ax=β的3个线性无关的解,其中[*]则有A(α
1
一α
2
)=0,A(α
1
一α
3
)=0.因此α
1
一α
2
,α
1
一α
3
是对应齐次线性方程组Ax=0的解,且线性无关,(否则,易推出α
1
,α
2
,α
1
一α
3
线性相关,矛盾). 所以n—r(A)≥2,即4一r(A)≥2,那么r(A)≤2.又矩阵A中有一个2阶子式[*],所以r(A)≥2.因此r(A)=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/Q434777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上二阶可导,f(0)=0,且证明:存在一点ξ∈(0,1),使得f’>(ξ)=0;
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=1,且a1+2a2=a3,A*是A的伴随矩阵.求矩阵A;
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=1,且a1+2a2=a3,A*是A的伴随矩阵.求正交变换x=Qy化二次型f(x1,x2,x3)=xTAx为标准形;
椭圆所围成平面图形的面积是________,椭圆所围图形绕x轴旋转一周的立体体积是________.
设y=y(x)是二阶常系数微分方程y”+Py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,求函数[ln(1+x2)]/y(x)的极限.
计算,其中r=(x-x0)i+(y-y0)j+(z-z0)k,r=|r|,n是曲面∑的外法向量,点M0(x0,y0,z0)是定点,点M(x,y,z)是动点,研究以下两种情况:(1)点M0(x0,y0,z0)在的∑外部;(2)点M0(x0,y0,z0)在
某企业在两个相互分割的市场上出售同一产品,两个市场的需求函数分别为P1=18-2Q1,P2=12-Q2,其中P1和P2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(单位:吨),且该企业生产该产品的总成本函数为
设f(x,y,z)是k次齐次函数,即f(tx,ty,tz)=tkf(x,y,z),λ为某一常数,则结论正确的是________。
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.(1)证明:β,Aβ,A2β线性无关;(2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
随机试题
我国外交政策中的独立自主是指()。
心理治疗工作中的道德要求是()
A、检测和调节温度的设施B、配备必要的冷藏箱(柜)等设施,防止商品变质C、明亮,整洁,无环境污染源D、专门的生活区和办公区E、必要的场所及与经营品种和规模相适应的化验仪器、设备医药经营企业的营业场所应
难溶性药物的小剂量片剂应检查的项目有
导致全口义齿基托折裂或折断的原因是()
疼痛是心肌梗死最早、最突出的表现。()
为了做到法律协助执行与保护客户隐私并重,在实践工作中,从业人员应该做到()。
某甲化工厂长期向临近的张华村的池塘排放工业废水,致使该村的井水无法饮用。于是张华村村委会向某县环保局提出申请,要求化工厂停止排放废水,并赔偿损失。某县环保局不予理睬,于是,张华村村委会又向市环保局申请复议。2004年3月16日,市环保局(住所地在该市某区)
ThehugeearthquakethathitoffthecoastofnortheasternMiyagiprefectureearlierthisyearwasaharshreminderofthemore
下列叙述中正确的是()。
最新回复
(
0
)