首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T,问: (1)a,b取何值时,β不能由α1,α2,α3线性表示? (2)a,b取何值时,β可由口α1,α2,α3线性表示?并
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T,问: (1)a,b取何值时,β不能由α1,α2,α3线性表示? (2)a,b取何值时,β可由口α1,α2,α3线性表示?并
admin
2021-01-19
65
问题
已知α
1
=(1,4,0,2)
T
,α
2
=(2,7,1,3)
T
,α
3
=(0,1,-1,a)
T
,β=(3,10,b,4)
T
,问:
(1)a,b取何值时,β不能由α
1
,α
2
,α
3
线性表示?
(2)a,b取何值时,β可由口α
1
,α
2
,α
3
线性表示?并写出此表达式.
选项
答案
因为 [*] 所以 (1)当b≠2时,线性方程组(α
1
,α
2
,α
3
)x=β无解,此时β不能由α
1
,α
2
,α
3
线性表示; (2)当b=2,a≠1时,线性方程组(α
1
,α
2
,α
3
)x=β有唯一解: x=(x
1
,x
2
,x
3
)
T
=(-1,2,0)
T
, 于是β可唯一表示为 β=-α
1
+2α
2
; 当b=2,a=1时,线性方程组(α
1
,α
2
,α
3
)x=β有无穷多个解: x=(x
1
,x
2
,x
3
)
T
=k(-2,1,1)
T
+(-1,2,0)
T
(k为任意常数). 这时β可由α
1
,α
2
,α
3
线性表示为 β=(2k+1)αα
1
+(k+2)α
2
+kα
3
(k为任意常数).
解析
[分析] 本题实质上是含参数方程x
1
α
1
+x
2
α
2
+x
3
α
3
=β是否有解的判定问题.
[评注] 一向量是否可由一组向量线性表示与对应的线性方程组是否有解是等同的,因而本题是考查方程组的求解.化矩阵为阶梯形时,应注意只能用行变换.在化为阶梯形后,对参数a、6的讨论不要重复也不要遗漏,即应分
来讨论.
转载请注明原文地址:https://kaotiyun.com/show/Q584777K
0
考研数学二
相关试题推荐
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(Ⅰ)存在η∈(1/2,1),使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
[*]
[*]
设()
若矩阵A=,B=A2-3A+2E,则B-1=_________.
设函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=___________.
如果β=(1,2,t)T可以由α1=(2,1,1)T,α2=(一1,2,7)T,α3=(1,一1,一4)T线性表示,则t=______。
(x2+xy-x)dxdy=_______,其中D由直线y=z,y=2x及x=1围成.
设方程确定y为x的函数,其中t为参变量,则=______。
用变量代换χ=sint将方程(1-χ2)-4y=0化为y关于t的方程,并求微分方程的通解.
随机试题
下列关于有关机关裁决适用法的情况的表述,正确的是()
运单是交货凭证。()
下列关于操作风险的说法,不正确的是()。
急性病毒性心肌炎患者最重要的护理措施是()。
社会主义核心价值观
下列选项中,对心理健康理解不正确的是()
甲因飞机失事失踪,利害关系人申请其死亡的时间是()
Jackreturnedthepentohisclassmate.Jack______thepen______hisclassmate.
Itisnoaccidentthatmoreandmorepeopleareeducatingtheirchildrenathome.HomeschoolingintheUnitedStatesisnolong
A、TherootofJim’shealthproblems.B、Thewoman’sproblemswithherworkaholicprofessor.C、Jim’srelationshipwithhisprofess
最新回复
(
0
)