首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2一α3.又设β=α1+α2+α3+α4,求AX=β的通解.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2一α3.又设β=α1+α2+α3+α4,求AX=β的通解.
admin
2018-11-20
28
问题
已知4阶矩阵A=(α
1
,α
2
,α
3
,α
4
),其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
.又设β=α
1
+α
2
+α
3
+α
4
,求AX=β的通解.
选项
答案
AX=β用向量方程形式写出为x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β,其导出组为x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0.条件β=α
1
+α
2
+α
3
+α
4
说明(1,1,1,1)
T
是AX=β的一个特解.α
1
=2α
2
一α
3
说明(1,一2,1,0)
T
。是导出组的一个非零解.又从α
2
,α
3
,α
4
线性无关和α
1
=2α
2
一α
3
,得到r(A)=3,从而导出组的基础解系只含4一r(A)=1个解,从而(1,一2,1,0)
T
为基础解系.AX=β的通解为 (1,1,1,1)
T
+c(1,一2,1,0)
T
,c可取任意数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Q5W4777K
0
考研数学三
相关试题推荐
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
设A,B为两个随机事件,且P(A)=0.7,P(A一B)=0.3,则=________.
设二维非零向量α不是二阶方阵A的特征向量.若A2a+Aα一6α=0,求A的特征值,讨论A可否对角化;
设n阶矩阵A满足A2+2A一3E=0.求:(A+2E)一1;
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=0,则().
10件产品有3件次品,7件正品,每次从中任取一件,取后不放回,求下列事件的概率:已知前两次没有取到次品,第三次取得次品;
设随机变量X在区间[一1,3]上服从均匀分布,则|X|的概率密度是________.
设X1,X2,…,X7为来自总体X~N(0,1)的简单随机样本,随机变量Y=(X1+X2+X3)2+(X4+X5+X6)2,则当C=________时,服从参数为________的t分布.
设函数f(u)连续,区域D={(x,y)|x2+y2≤2y},则等于()
假设随机变量X1,X2,X3,X4相互独立且都服从0—1分布:P{Xi=1}=p,P{Xi=0}=1—p(i=1,2,3,4,0<p<1),已知二阶行列式的值大于零的概率等于,则p=________。
随机试题
下列主体中有权制定行政规范性文件的是()。
在下列情况下,可使骨骼肌肌梭I。类纤维传入冲动增多的有
女,51岁,月经一年未来潮,每日数次出现烘热,出汗,面部发红,情绪烦躁,易怒,睡眠不好,时有心悸,血压时有波动。其主要病因为
直流电碘离子导入软化瘢痕的治疗原理是
新旧程度相同的车床中,()价格最高。
下列各项不属于标准化的主要作用的是()。
试述如何编制体育课程。
犯罪同类客体最显著的作用是()
Wefindthatbrightchildrenarerarelyheldbackbymixed-abilityteaching.Onthecontrary,boththeirknowledgeandexperienc
SummerSchoolandOnlineClassesIntheUnitedStates,【T1】______forhighschoolstudents【T2】______.But【T3】______.【T4】_____
最新回复
(
0
)