首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明如果α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明如果α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
admin
2018-12-19
78
问题
已知λ
1
,λ
2
,λ
3
是A的特征值,α
1
,α
2
,α
3
是相应的特征向量且线性无关。证明如果α
1
+α
2
+α
3
仍是A的特征向量,则λ
1
=λ
2
=λ
3
。
选项
答案
若α
1
+α
2
+α
3
,是矩阵A属于特征值入的特征向量,则 A(α
1
+α
2
+α
3
)=λ(α
1
+α
2
+α
3
)。 又A(α
1
+α
2
+α
3
)=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
,于是有 (λ一λ
1
)α
1
+(λ一λ
2
)α
2
+(λ一λ
3
)α
3
=0。 因为α
1
,α
2
,α
3
线性无关,故λ一λ
1
=0,λ—λ
2
=0,λ—λ
3
=0,即λ
1
=λ
2
=λ
3
。
解析
转载请注明原文地址:https://kaotiyun.com/show/6jj4777K
0
考研数学二
相关试题推荐
设函数f(x)在闭区间[a,b]上连续,且f(x)>0,则方程在开区间(a,b)内的根有()
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根;(2)记(1)中的实根为xn,证明存在,并求此极限.
设f(x,y)与φ(x,y)均为可微函数,且φy’(x,y)≠0.已知(x0,y0)gf(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是()
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且
设可微函数f(x,y)在点(x0,y0)取得极小值,则下列结论正确的是()
微分方程yˊˊ-3yˊ+2y=2ex满足=1的特解为________.
设A是n阶矩阵,下列结论正确的是().
(2005年)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
(1996年)设函数y=y(χ)由方程2y3-2y2+2χy-χ2=1所确定,试求y=y(χ)的驻点,并判别它是否为极值点.
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
随机试题
从2017年起,国防生不再从()中招生。
下列关于楼面地价及容积率的计算公式中,错误的是【】
猩红热帕氏线常见的部位是
附加承保责任保险往往是以各种财产保险的组成部分或以附加责任方式承保,如()。
《职业健康安全管理体系一规范》(GB/T28001一-2001)中的职业健康安全方针体现了企业实现()的总体职业健康安全目标。
下列关于个人贷款借款合同的签订,表述错误的是()。
设A是三阶矩阵,其特征值是1,3,一2,相应的特征向量依次是α1,α2,α3,若P=(α1,2α3,一α2),则P—1AP=()
Howbesttosolvethepollutionproblemsofacitysunksodeepwithinsulfurouscloudsthatitwasdescribedashellonearth?
Readthefollowingpassageandanswerquestions19~25.Forquestions19~25,choosethecorrectanswerfromA,B,CandD.
Acompany’smaingoalinusingvoicemailistobeefficientandsavemoney.
最新回复
(
0
)