首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值
admin
2016-06-30
39
问题
设有向量组(Ⅰ):α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和向量组(Ⅱ):β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值时,向量组(Ⅰ)与(Ⅱ)不等价?
选项
答案
由于行列式|α
1
α
2
α
3
|=a+1,故当a≠-1时,秩[α
1
α
2
α
3
]=3.方程组χ
1
α
1
+χ
2
α
2
+χ
3
α
3
=β
i
(i=1,2,3)有解(且有唯一解),所以向量组(Ⅱ)可由向量组(Ⅰ)线性表示;又由行列式|β
1
β
2
β
3
|=6≠0,同理可知向量组(Ⅰ)可由(Ⅱ)线性表示.故当a≠-1时,(Ⅰ)与(Ⅱ)等价.当a=-1时,由于秩[α
1
α
2
α
3
]≠秩[α
1
α
2
α
3
[*]β
1
],故方程组χ
1
α
1
+χ
2
α
2
+χ
3
α
3
=β
1
无解,即β
1
不能由向量组(Ⅰ)线性表示,所以(Ⅰ)与(Ⅱ)不等价.
解析
转载请注明原文地址:https://kaotiyun.com/show/Q9t4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f′+(a)>0.证明:存在ξ∈(a,b),使得f″(ξ)<0.
设f(x)在[0,1]上二阶可导,且|f″(x)|≤|(x∈[0,1]),又f(0)=f(1),证明:|f′(x)|≤1/2(x∈[0,1]).
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
设随机变量X,Y都是正态变量,且X,Y不相关,则().
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为-1/2,又设X=X/3+Y/2.求ρxz;
设(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X,Y的相关系数为,ρxy=-0.5,且P(aX+bY≤1)=0.5,则().
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=________。
作半径为r的球的外切正圆锥,问此因锥的高h为何值时,其体积V最小,并求出该最小值.
利用等价无穷小代换定理,并提出因子esinx,再应用洛必达法则得[*]
设曲线y=ax2(a>0,x≥0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形,问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
随机试题
2021年新年伊始,新能源汽车巨头特斯拉新款车型特斯拉ModelY正式向国内消费者亮相,同时,国产ModelY正式开卖。国产ModelY共推出长续航版和高性能版两款车型,其中长续航版起售价为33.99万元,较此前预售价48.8万元下调了14.81万元;高性
午后或入夜低热,伴有五心烦热者是
药品生产企业可将药品销售给
在下列各类用地土地使用年限的出让最高年限中,正确的是:[2008年第11题]
一氧气瓶的容积为V,开始时充入氧气的压强为P1,使用一段时间之后压强降为P2,此时瓶中氧气的内能为E2,与使用前氧气的内能E1之比为()。
关于价值工程的说法,正确的有()。
内存按其功能可分为()。
行政单位的国有资产包括()。
在劳动争议的处理程序中必须坚持先行()。
Ifyou______yourcarloan,thebankwilltakepossessionofyourcar.
最新回复
(
0
)