首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值
admin
2016-06-30
75
问题
设有向量组(Ⅰ):α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和向量组(Ⅱ):β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值时,向量组(Ⅰ)与(Ⅱ)不等价?
选项
答案
由于行列式|α
1
α
2
α
3
|=a+1,故当a≠-1时,秩[α
1
α
2
α
3
]=3.方程组χ
1
α
1
+χ
2
α
2
+χ
3
α
3
=β
i
(i=1,2,3)有解(且有唯一解),所以向量组(Ⅱ)可由向量组(Ⅰ)线性表示;又由行列式|β
1
β
2
β
3
|=6≠0,同理可知向量组(Ⅰ)可由(Ⅱ)线性表示.故当a≠-1时,(Ⅰ)与(Ⅱ)等价.当a=-1时,由于秩[α
1
α
2
α
3
]≠秩[α
1
α
2
α
3
[*]β
1
],故方程组χ
1
α
1
+χ
2
α
2
+χ
3
α
3
=β
1
无解,即β
1
不能由向量组(Ⅰ)线性表示,所以(Ⅰ)与(Ⅱ)不等价.
解析
转载请注明原文地址:https://kaotiyun.com/show/Q9t4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0.证明:(1)存在η∈(1/2,1),使得f(η)=η;(2)对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f′(ξ)-k[f(ξ)-ξ]=1.
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为-1/2,又设X=X/3+Y/2.求ρxz;
作半径为r的球的外切正圆锥,问此因锥的高h为何值时,其体积V最小,并求出该最小值.
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。问k为何值时,f(x)在x=0处可导。
一商家销售某种商品的价格满足关系p=7-0.2x(万元/吨),x为销售量(单位:吨),商品的成本函数是C=3x+1(万元)t为何值时,政府税收总额最大。
设D1是由抛物线y=2x2和直线x=a,x=2及y=0所围成的平面区域;D2是由抛物线y=2x2和直线y=0,x=0所围成的平面区域,其中0<a<2.问当a为何值时,V1+V2取最大值?试求此最大值。
设曲线y=ax2(a>0,x≥0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形,问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
随机试题
可引起或加重骨质疏松症的药物有()。
下列哪组函数是线性相关的()
【背景资料】某工程项目建筑面积6200m2,地上12层,地下2层,采用框架一剪力墙结构体系。施工单位编制了单位工程施工组织设计,在施工平面图设计中依次考虑了如下几项工作:(1)布置现场内的运输道路,因场地条件限制采用主干道和消防车道合一单向行驶,
某公司为增值税一般纳税人,适用增值税税率17%。该公司生产经营甲产品,甲产品的单位售价为500元(不合税),单位成本为350元。2014年10月份该公司发生的交易或事项有:(1)10月3日,向本市某商场销售甲产品60台,价税款收妥存入银行。
()是接受公司对分出公司转让的危险或责任所能接受或承担的最大赔款限额
甲公司持有在境外注册的乙公司80%股权,能够对乙公司的财务和经营政策实施控制。甲公司以人民币为记账本位币,乙公司以港币为记账本位币,发生外币交易时甲公司和乙公司均采用交易日的即期汇率进行折算。(1)2×16年10月20日,甲公司以每股4欧元的价格购入丙
对个性相对稳定性原则的理解,以下描述不正确的是()。
下图表示某小岛上蜥蜴进化的基本过程。下列叙述中正确的是()。
设为两个正项级数.证明:若收敛;
早期的关系操作能力通常用代数方式或者()来表示,分别称为关系代数和关系演算。
最新回复
(
0
)