首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知曲线L的方程 (1)讨论L的凹凸性; (2)过点(=1,0)引L的切线,求切点(x0,y0),并写出切线的方程; (3)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.
已知曲线L的方程 (1)讨论L的凹凸性; (2)过点(=1,0)引L的切线,求切点(x0,y0),并写出切线的方程; (3)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.
admin
2019-08-01
88
问题
已知曲线L的方程
(1)讨论L的凹凸性;
(2)过点(=1,0)引L的切线,求切点(x
0
,y
0
),并写出切线的方程;
(3)求此切线与L(对应于x≤x
0
的部分)及x轴所围成的平面图形的面积.
选项
答案
(1)因为[*] 故曲线L当f≥0时是凸的. (2)由(1)知,切线方程为y-0=[*](x+1),设x
0
=t
0
2
+1,y
0
=4t
0
-t
0
2
,则(fi+2),即4t
0
—t
0
2
=[*](2-t
0
)(t
0
2
+2),整理得t
0
2
+t
0
-2=0→(t
0
-1)(t
0
+2)=0→t
0
=1,t
0
=-2(舍去).将t
0
=1代入参数方程,得切点为(2,3),故切线方程为 y-3=[*](x-2),即y=x+1. (3)由题设可知,所水平面图形如图1—2—1所示,其中各点坐标为A(1,0),B(2,0),C(2,3),D(-1,0), 设L的方程x=g(y),则S=∫
0
3
[g(y)-(y-1)]dy 由参数方程可得[*] 由于C(2,3)在L上,则x=g(y)=[*]于是 [*] [*]
解析
[分析] (1)利用曲线凹凸的定义来判定;(2)先写出切线方程,然后利用(-1,0)在切线上;(3)利用定积分计算平面图形的面积.
[评注] 本题为基本题型,第(3)问求平面图形的面积时,要将参数方程转化为直角坐标方程求解.
转载请注明原文地址:https://kaotiyun.com/show/QDN4777K
0
考研数学二
相关试题推荐
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n-r(A)+1.
设f(x)在[0,+∞)连续,f(x)=A≠0,证明:∫01f(x)dx=A.
设曲线y=x2+ax+b和2y=-1+xy3在点(1,-1)处相切,其中a,b是常数,则
计算下列二重积分:(Ⅰ)xydσ,其中D是由曲线r=sin2θ(0≤θ≤)围成的区域;(Ⅱ)xydσ,其中D是由曲线y=,x2+(y-1)2=1与y轴围成的在右上方的部分.
已知A=可对角化,求可逆矩阵P及对角矩阵Λ,使P-1AP=Λ.
若函数f(x,y)对任意正实数t,满足f(tx,ty)=tnf(x,y),(7.12)称f(x,y)为n次齐次函数.设f(x,y)是可微函数,证明:f(x,y)为n次齐次函数
求下列不定积分:
设数列{xn}满足0<x1<1,ln(1+xn)=exn+1一1(n=1,2,…).证明当0<x<1时,ln(1+x)<x<ex一1;
(1998年试题,六)计算积分
随机试题
first/lstyear录音原文中的名词词组academicsuccess“学术上的成功”是对题目中的动词词组succeedacademically“在学术上取得成功”的同义替换。
德育、智育、体育、美育、劳动技术教育是全面发展教育的基本组成部分。下列关于全面发展教育的说法正确的有()
下列物质中毒可采用腹膜透析解救的是
A.病变常呈特征性带状分布:增生活跃的纤维组织、类骨组织、成熟骨组织B.由软骨膜、软骨帽及骨性基底构成C.由纤维组织及周边成排骨母细胞围绕的骨小梁构成D.由软骨样组织、黏液样组织和纤维组织构成E.呈分叶状,由胞质红染、含空泡的软骨细胞及透明软骨基质
急性心肌梗死的处理中,不正确的是
A.抑制RNA多聚酶B.抑制蛋白质合成C.抑制分枝菌酸合成D.抑制二氢叶酸合成酶E.抑制二氢叶酸还原酶PAS抗结核杆菌的作用原理是
公开招标采用公告的形式发布,邀请招标采用投标邀请书的形式发布,体现了两者()不同。
“小李并非既懂英语又懂俄语”,对这句话理解正确的是()。
什么是要素主义教育?
ReformandMedicalCosts[A]Americansaredeeplyconcernedabouttherelentlessriseinhealthcarecostsandhealthinsurancep
最新回复
(
0
)