首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数f(x,y)对任意正实数t,满足 f(tx,ty)=tnf(x,y), (7.12) 称f(x,y)为n次齐次函数.设f(x,y)是可微函数,证明:f(x,y)为n次齐次函数
若函数f(x,y)对任意正实数t,满足 f(tx,ty)=tnf(x,y), (7.12) 称f(x,y)为n次齐次函数.设f(x,y)是可微函数,证明:f(x,y)为n次齐次函数
admin
2018-06-27
103
问题
若函数f(x,y)对任意正实数t,满足
f(tx,ty)=t
n
f(x,y), (7.12)
称f(x,y)为n次齐次函数.设f(x,y)是可微函数,证明:f(x,y)为n次齐次函数
选项
答案
设f(x,y)是n次齐次函数,按定义,得 f(tx,ty)=t
n
f(x,y)[*]为恒等式.将该式两端对t求导,得 xf’
1
(tx,ty)+yf’
2
(tx,ty)=nt
n-1
f(x,y)[*], 令t=1,则 xf’
x
(x,y)+yf’
y
(x,y)=nf(x,y). 现设上式成立.考察φ(t)=[*],由复合函数求导法则,可得 φ’(t)=[*][xf’
1
(tx,ty)+yf’
2
(tx,ty)]-[*]f(tx,ty) =[*][txf’
1
(tx,ty)+tyf’
2
(tx,ty)-nf(tx,ty)]=0, 即φ(t)为常数,φ(t)=φ(1)=f(x,y),即f(tx,ty)=t
n
f(x,y).
解析
转载请注明原文地址:https://kaotiyun.com/show/eZk4777K
0
考研数学二
相关试题推荐
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:矩阵B=(α,Aα,A4α)可逆;
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明:方程组(α1,α2)x=β有唯一解,并求该解;
设f(x)在(一∞,+∞)上存在二阶导数,f’(0)0.证明:若f(x)恰有两个零点,则此两零点必反号.
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向x轴负向无限伸展的平面图形记为D.求(I)D的面积A;(Ⅱ)D绕直线x=1所成的旋转体的体积V.
设证明:f(x,y)在点(0,0)处不可微.
设矩阵,E为2阶单位矩阵,矩阵B满足BA=B+2E,则|B|=________.
(2009年试题,一)若f’’(x)不变号,且曲线y=f(x)在点(1,1)上的曲率圆为x2+y2=2,则f(x)在区间(1,2)内().
(2007年试题,24)设三阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,又α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A2一4A3+E,其中E为三阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
随机试题
某小规模纳税人采用销售额和销项税额合并定价法销售一批货物,销货款为20000元,则该次交易的应缴增值税额为
被称为恶病质素的细胞因子是
Ph染色体阳性对于下列哪种疾病的诊断有重要意义
标的证券为股票的,应当符合的条件有()。
某医院医生李某在为患者张某进行阑尾炎手术时,不慎将一块纱布遗留在张某的体内,张某在手术后连续数日疼痛难忍,再次检查时才发现纱布并重新手术取出。有关张某所受人身伤害的赔偿责任,下列说法正确的有()。
基准利率是在商业票据市场和同业拆借市场的交易中产生的。()
某沿海城市管辖A、B、C、D、E、F、G共7个县,这7个县的位置如图2所示。现用红、黑、绿、蓝、紫五种颜色给这7个县染色,要求任意相邻的两个县染不同颜色。则不同的染色方法有
线性表的顺序存储结构和线性表的链式存储结构分别是
FreeStatinsWithFastFoodCouldNeutralizeHeartRiskFastfoodoutletscouldprovidestatindrugsfreeof【C1】______sotha
WhyDepressionNeedsaNewDefinition[A]Manypsychiatristsbelievethatanewapproachtodiagnosingandtreatingdepression—li
最新回复
(
0
)