首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知r(α1,α2,…,αs)=r(α1,α2,…,α,β)=m,r(α1,α2,…,α,γ)=m+1,则 r(α1,α2,…,αs,β,γ)=__________。
已知r(α1,α2,…,αs)=r(α1,α2,…,α,β)=m,r(α1,α2,…,α,γ)=m+1,则 r(α1,α2,…,αs,β,γ)=__________。
admin
2019-01-19
33
问题
已知r(α
1
,α
2
,…,α
s
)=r(α
1
,α
2
,…,α,β)=m,r(α
1
,α
2
,…,α,γ)=m+1,则
r(α
1
,α
2
,…,α
s
,β,γ)=__________。
选项
答案
m+1
解析
已知r(α
1
,α
2
,…,α
s
)=r(α
1
,α
2
,…,α
s
,β)=m,表明向量β可以由向量组α
1
,α
2
,…,α
s
线性表示,但是r(α
1
,α
2
,…,α
s
,γ)=m+1,则表明向量γ不能由向量组α
1
,α
2
,…,α
s
线性表示,因此通过对向量组α
1
,α
2
,…,α
s
,β,γ作初等列变换,可得
(α
1
,α
2
,…,α
s
,β,γ)=(α
1
,α
2
,…,α
s
,0,γ),
因此可得r(α
1
,α
2
,…,α
s
,β,γ)=m+1。
转载请注明原文地址:https://kaotiyun.com/show/QbP4777K
0
考研数学三
相关试题推荐
(90年)已知f(χ)在χ=0某邻域内连续,且f(0)=0,=2,则在点χ=0处f(χ)
(04年)设总体X服从正态分布N(μ1,σ2),总体Y服从正态分布N(μ2,σ2),X1,X2,…,和Y1,Y2,…,分别是来自总体X和Y的简单随机样本,则_______.
(10年)设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
(15年)设3阶矩阵A的特征值为2,-2,1,B=A2-A+E,,其中E为3阶单位矩阵,则行列式|B|=_______.
(93年)设随机变量X和Y同分布,X的概率密度为(1)已知事件A={X>a}和B={Y>a}独立,且P{A∪B)=,求常数a;(2)求的数学期望.
(11年)设二维随机变量(X,Y)服从正态分布N(μ,μ;σ2,σ2;0),则E(XY2)=_______.
(07年)设矩阵A=,则A3的秩为_______.
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列.
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Aχ=b恒有解的充分必要条件是r(A)=m.
设有齐次线性方程组Aχ=0和Bχ=0,其中A、B均为m×n矩阵.现有4个命题:【】①若Aχ=0的解均是Bχ=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Aχ=0的解均是Bχ=0的解;③若Aχ=0与B
随机试题
Itwasasummerevening.Iwassittingbytheopenwindow,readinga【C1】________Suddenly,Iheardsomeonecrying,"Help!Help!
用于控制疟疾症状的最佳抗疟药是
最可能的诊断是假如CT检查发现患者为脑叶出血,血肿超过40ml,患者颅压增高症状明显加重,处于浅昏迷状态,应首选下列何项措施
A.左下6B.右上5C.右上1D.右上ⅣE.左上Ⅲ左上乳尖牙
患者,女,35岁。月经周期正常,惟月经量少、色红、质稠,经期鼻衄,量不多,色暗红,伴手足心热,潮热颧红,舌红少苔,脉细数。其证候是
资产组合M的期望收益率为18%,标准离差为27.9%;资产组合N的期望收益率为13%,标准离差率为1.2。投资者张某和赵某决定将其个人资金投资于资产组合M和N中,张某期望的最低收益率为16%,赵某投资于资产组合M和N的资金比例分别为30%和70%。
建设工程的屋面防水工程、有防水要求的卫生间、房间和外墙面的防渗漏,最低保修期限为()年。
8,17,24,37,()
《民法典》规定:“物权的种类和内容,由法律规定。”对此,下列说法中正确的是()
Thatshewas(i)_____rockclimbingdidnotdiminishher(ii)_____tojoinherfriendsonarock-climbingexpedition.
最新回复
(
0
)