首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2000年] 设α1,α2,α3是四元非齐次线性方程组AX=b的3个解向量,且秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,c表示任意常数,则线性方程组AX=b的通解X=( ).
[2000年] 设α1,α2,α3是四元非齐次线性方程组AX=b的3个解向量,且秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,c表示任意常数,则线性方程组AX=b的通解X=( ).
admin
2021-01-25
119
问题
[2000年] 设α
1
,α
2
,α
3
是四元非齐次线性方程组AX=b的3个解向量,且秩(A)=3,α
1
=[1,2,3,4]
T
,α
2
+α
3
=[0,1,2,3]
T
,c表示任意常数,则线性方程组AX=b的通解X=( ).
选项
A、[1,2,3,4]
T
+c[1,1,1,1]
T
B、[1,2,3,4]
T
+c[0,1,2,3]
T
C、[1,2,3,4]
T
+c[2,3,4,5]
T
D、[1,2,3,4]
T
+c[3,4,5,6]
T
答案
C
解析
解一 仅(C)入选.AX=b为四元非齐次方程组,秩(A)=3,AX=0的一个基础解系只含n-秩(A)=4-3=1个解向量.将特解的线性组合2α
1
,α
2
+α
3
写成特解之差的线性组合,即
2α
1
-(α
2
+α
3
)=(α
1
-α
2
)+(α
1
-α
3
).
因2一(1+1)=0,由命题2.4.4.1知,2α
1
-(α
2
+α
3
)=[2,3,4,5]
T
≠0仍为AX=0的一个解向量,且为其一个基础解系,故AX=b的通解为
X=α
1
+k[2α
1
-(α
2
+α
3
)]=[1,2,3,4]
T
+k[2,3,4,5]
T
.
解二 仅(C)入选.因秩(A)=3,故四元齐次方程组AX=0的基础解系所含向量的个数为4一秩(A)=1,所以AX=0的任一个非零解都是它的基础解系.由于α
1
及(α
2
+α
3
)/2都是AX=b的解(因1/2+1/2=1),故
α
1
-
(α
2
+α
3
)=
[2α
1
-(α
2
+α
3
)]=
[2,3,4,5]
T
是AX=0的一个解,从而2×
[2,3,4,5]
T
=[2,3,4,5]
T
=η也是AX=0的一个解,且因η≠0,故η为Ax=0的一个基础解系,所以AX=b的通解为
X=α
1
+cη=[1,2,3,4]
T
+c[2,3,4,5]
T
, c为任意常数.
转载请注明原文地址:https://kaotiyun.com/show/eux4777K
0
考研数学三
相关试题推荐
(99年)设矩阵A=且|A|=-1,又设A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=(-1,-1,1)T.求a,b,c及λ0的值.
(2018年)将长为2m的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小值?若存在,求出最小值.
[2007年]设二维随机变量(X,Y)的概率密度为求P(X>2Y);
(10年)设二维随机变量(X,Y)的概率密度为f(χ,y)=A,-∞<χ<+∞,-∞<y<+∞,求常数A及条件概率密度fY|X(y|χ).
(16年)设某商品的最大需求量为1200件,该商品的需求函数Q=Q(p),需求弹性η=(η>0),p为单价(万元).(Ⅰ)求需求函数的表达式;(Ⅱ)求p=100万元时的边际收益,并说明其经济意义.
二次型f(x1,x2,x3)=x12+3x22+x32+2x1x2+2x1x3+2x2x3,则f的正惯性指数为____________.
设f(x)是连续函数,且0x3-1f(t)dt=x,则f(7)=________.
求极限
设则A与B().
在第一象限求一曲线,使曲线的切线、坐标轴和过切点与横轴平行的直线所围成的梯形面积等于a2,且曲线过点(a,a),a>0为常数.
随机试题
关于肺结核处于稳定期的描述下列哪项是不正确的
患者喘逆剐甚,张口抬肩,鼻翼煽张,呼吸困难,不能平卧,心悸,烦躁不安,面唇青紫,汗出肢冷,脉浮大无根。治宜
男,48岁,反酸、烧心5个月。胃镜检查:反流性食管炎伴溃疡形成。最佳的治疗药物是
乳腺癌好发于
主要用于预防Ⅰ型变态反应所致哮喘的药物是( )。
已知沿海某建设项目废气中SO2的等标排放量是3.0×109,则该项目大气的评价等级为()。
在影响消费者行为的因素中,属于个人因素的有()。
保证幼儿每天睡(),其中午睡一般应达到2小时左右。午睡时间可根据幼儿年龄、季节的变化和个体差异适当减少。
眼过千遍不如手过一遍,是贯彻()原则的体现。
市场失灵的主要表现有()。
最新回复
(
0
)