首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. (1)求A的特征值和特征向量; (2)求可逆矩阵P,使得P一1AP=A.
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. (1)求A的特征值和特征向量; (2)求可逆矩阵P,使得P一1AP=A.
admin
2016-06-25
73
问题
设A=E+αβ
T
,其中α=[a
1
,a
2
,…,a
n
]
T
≠0,β=[b
1
,b
2
,…,b
n
]
T
≠0,且α
T
β=2.
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使得P
一1
AP=A.
选项
答案
(1)设 (E+αβ
T
)ξ=λξ. ① 左乘β
T
, β
T
(E+αβ
T
)ξ=(β
T
+β
T
αβ
T
)ξ=(1+β
T
α)β
T
ξ=λβ
T
ξ, 若β
T
ξ≠0,则λ=1+β
T
α=3; 若β
T
ξ=0,则由①式,λ=1. λ=1时, (E一A)X=一αβ
T
X=一[*][b
1
,b
2
,…,b
n
]X=0. 即[b
1
,b
2
,…,b
n
]X=0,因α
T
β=2,故α≠0,β≠0,设b
1
≠0,则 ξ
1
=[b
2
,一b
1
,0,…,0]
T
,ξ
2
=[b
3
,0,一b
1
,…,0]
T
,…,ξ
n一1
=[b
n
,0,…,0,一b
1
]
T
; λ=3时, (3E一A)X=(2E一αβ)X=0, ξ
n
=α=[a
1
,a
2
,…,a
n
] (2)取 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Qnt4777K
0
考研数学二
相关试题推荐
设则().
设f(x)二阶可导,且f″(x)>0.证明:当x≠0时,f(x)>x.
设函数f(x)在x=1的某邻域内有定义,且满足|f(x)-2ex|≤(x-1)2,研究函数f(x)在x=1处的可导性.
设函数y=y(x)由确定,则y=y(x)在x=ln2处的法线方程为________.
设f(x)是二阶常系数非齐次线性微分方程y″+py′+qy=sin2x+2ex的满足初始条件f(0)=f′(0)=0的特解,则当x→0时,().
设X~N(1,σ2),Y~N(2,σ2)为两个相互独立的总体,X1,X2,…,Xm与Y1,Y2,…n分别为来自两个总体的简单样本,S12=服从________分布.
设周期函数f(x)在(-∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为________.
设f(x)在(-∞,+∞)内有定义,且,则________。
已知f(x)=x2-x∫02f(x)dx+2∫01f(x)dx,试求f(x).
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
随机试题
背景:北京某教学楼工程,框架结构,地下1层,地上5层,建筑面积22000m2,由于地质条件的原因,底板留设了后浇带,工程于2008年5月7日开始施工,计划2009年8月15日竣工,在施工过程中发生了如下事件:事件一:地下部分基础及结构完
慢性化脓性骨髓炎在中医学中被称为
A、Exercise:ValuebeyondWeightLoss.B、Exercise:theWaytoWell-being.C、ExerciseforaBetterLife.D、ExerciseforWeightLos
早期结核性脑膜炎的主要临床表现特点是
近年来对发热患者应用中性粒细胞硝基四唑氮试验(nitrobluetetrazolintest,NBT),主要是用于鉴别
生产已由国家药品监督管理局颁布的正式标准的药品注册申请未曾在中国境内上市销售药品的注册申请
患者,女,32岁,右胸外伤后肋骨骨折,极度呼吸困难、发绀、烦躁不安。体检:脉搏细速,血压80/60mmHg,皮肤湿冷,气管左移,颈静脉充盈,头颈部和右胸皮下气肿,右胸廓饱满、肋间隙增宽、呼吸幅度降低,叩诊呈鼓音,右肺呼吸音消失。若该患者行胸腔闭式引流,
对浊度小于3mg/l的河水。一般给水处理厂广泛采用的常规处理流程是()。
资料:某公司2013年7月31日记账后有关账户的期末余额如下:(1)“库存现金”借方余额800元。(2)“银行存款”借方余额600000元。(3)“应收票据”借方余额100000元。(4)“固定资产”借
客户服务是基金营销的重要组成部分,下列不属于客户服务的是()。
最新回复
(
0
)