首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. (1)求A的特征值和特征向量; (2)求可逆矩阵P,使得P一1AP=A.
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. (1)求A的特征值和特征向量; (2)求可逆矩阵P,使得P一1AP=A.
admin
2016-06-25
74
问题
设A=E+αβ
T
,其中α=[a
1
,a
2
,…,a
n
]
T
≠0,β=[b
1
,b
2
,…,b
n
]
T
≠0,且α
T
β=2.
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使得P
一1
AP=A.
选项
答案
(1)设 (E+αβ
T
)ξ=λξ. ① 左乘β
T
, β
T
(E+αβ
T
)ξ=(β
T
+β
T
αβ
T
)ξ=(1+β
T
α)β
T
ξ=λβ
T
ξ, 若β
T
ξ≠0,则λ=1+β
T
α=3; 若β
T
ξ=0,则由①式,λ=1. λ=1时, (E一A)X=一αβ
T
X=一[*][b
1
,b
2
,…,b
n
]X=0. 即[b
1
,b
2
,…,b
n
]X=0,因α
T
β=2,故α≠0,β≠0,设b
1
≠0,则 ξ
1
=[b
2
,一b
1
,0,…,0]
T
,ξ
2
=[b
3
,0,一b
1
,…,0]
T
,…,ξ
n一1
=[b
n
,0,…,0,一b
1
]
T
; λ=3时, (3E一A)X=(2E一αβ)X=0, ξ
n
=α=[a
1
,a
2
,…,a
n
] (2)取 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Qnt4777K
0
考研数学二
相关试题推荐
确定a,b,使得当x→0时x-(a+bcosx)sinx为阶数尽可能高的无穷小.
设随机变量X~U[-1,1],则随机变量U=arcsinX,V=arccosX的相关系数为().
设f(x),ψ(x)在点x=0的某邻域内连续,且当x→0时,f(x)是ψ(x)的高阶无穷小,则当x→0时,∫0xf(t)sintdt是∫0xtψ(t)dt的________。
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1]有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)
设a>1,f(t)=at-at在(-∞,+∞)内的驻点为t(a).问a为何值时,t(a)最小?并求出最小值.
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。问k为何值时,f(x)在x=0处可导。
设f(u)可导,y=f(x2)在x0=-1处取得增量△x=0.05时,函数增量△y的线性部分为0.15,则f’(1)=________.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
设A是3阶方阵,将A的第1列与第2列交换得B,再把B的第2列加到第3列得C,则满足AQ=C的可逆矩阵Q为
随机试题
论述我国海洋污染防治的监督管理体制。
患者,女,16岁。枕部着地,昏迷10分钟后清醒,并自己回到家中,其后出现头痛,并呈逐渐加重伴呕吐,半小时后不省人事,急送医院。查体:BP130/90mmHg,P65次/分,R15次/分。浅昏迷,右枕部头皮挫伤,左侧瞳孔5mm,对光反应消失,右侧
待有足够的资料后,可进行规划方案的制定,不属其步骤的是()。
人程监理的工作性质有()的特点。
Thecostofround-tripairtransportationisincluded________thenine-daycruisepackage.
在某堂植物课教学中.王老师讲授“果实”概念时即选用可食用的(如橘子),又选用不可食用的(如棉籽),这样有利于学生准确掌握果实概念。运用了()。
Itusedtobesostraightforward(直接的).Ateamofresearchersworkingtogetherinthelaboratorywouldsubmittheresultsofthe
OneafternoonIwassittingatmyfavoritetableinarestaurant,waitingforthefoodIhadordered.SuddenlyI【36】thatamansit
Withthepicturesand______.
Foxesandfarmershavenevergotonwell.Thesesmalldog-likeanimalshavelongbeenaccusedofkillingfarmanimals.Theyare
最新回复
(
0
)