首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. (1)求A的特征值和特征向量; (2)求可逆矩阵P,使得P一1AP=A.
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. (1)求A的特征值和特征向量; (2)求可逆矩阵P,使得P一1AP=A.
admin
2016-06-25
51
问题
设A=E+αβ
T
,其中α=[a
1
,a
2
,…,a
n
]
T
≠0,β=[b
1
,b
2
,…,b
n
]
T
≠0,且α
T
β=2.
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使得P
一1
AP=A.
选项
答案
(1)设 (E+αβ
T
)ξ=λξ. ① 左乘β
T
, β
T
(E+αβ
T
)ξ=(β
T
+β
T
αβ
T
)ξ=(1+β
T
α)β
T
ξ=λβ
T
ξ, 若β
T
ξ≠0,则λ=1+β
T
α=3; 若β
T
ξ=0,则由①式,λ=1. λ=1时, (E一A)X=一αβ
T
X=一[*][b
1
,b
2
,…,b
n
]X=0. 即[b
1
,b
2
,…,b
n
]X=0,因α
T
β=2,故α≠0,β≠0,设b
1
≠0,则 ξ
1
=[b
2
,一b
1
,0,…,0]
T
,ξ
2
=[b
3
,0,一b
1
,…,0]
T
,…,ξ
n一1
=[b
n
,0,…,0,一b
1
]
T
; λ=3时, (3E一A)X=(2E一αβ)X=0, ξ
n
=α=[a
1
,a
2
,…,a
n
] (2)取 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Qnt4777K
0
考研数学二
相关试题推荐
设总体X~N(0,8),Y~N(0,22),且C1及(Y1,Y2)分别为来自上述两个总体的样本,则~________.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为-1/2,又设X=X/3+Y/2.求E(Z),D(Z);
某商店经销某种商品,每周进货数量X与顾客对该种商品的需求量Y之间是相互独立的,且都服从[10,20]上的均匀分布,商店每出售一单位商品可获利1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利500元。计算此商店经销该种商品每周所
不用求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程f’(x)=0有几个实根,并指出它们所在的区间。
若f(x)满足条件f(1+x)=af(x),且f’(0)=b(常数a,b≠0),求f’(1)。
设其导函数在x=0处连续,则λ的取值范围是________。
求下列微分方程的通解。sec2xtanydx+sec2ytanxdy=0
设y1,y2是二阶常系数线性齐次方程y"+p(x)y’+q(x)y=0的两个特解,则由y1(x)与y2(x)能构成该方程的通解,其充分条件是________。
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
随机试题
尿路感染是常见病,发病率约占人口的
心理过程包括哪三个过程
弱矩阵式、强矩阵式和平衡矩阵式三种项目管理组织形式的主要区别在于()。
根据《建设工程施工劳务分包合同(示范文本)》(GF—2003—0214),应由劳务分包人承担的工作费用是()。
对在境内设立证券公司或者在境外设立、收购或者参股证券经营机构的申请,国务院证券监督管理机构自受理之日起()内作出批准或者不予批准的书面决定。
中国共产党把毛泽东思想确定为党的指导思想的会议是()。
数学教学中为什么要贯彻理论与实际相结合的原则?
下列何种权利可以由当事人一方以自己的行为使法律关系发生变动()
简述抵押人的权利。
有如下程序段:intx=12;doubley=3.141593;printf("%d%8.6f",x,y);其输出结果是()。
最新回复
(
0
)