首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中 α1一α2,α1一2α2+α3,(α1一α3),α1+3α2一4α3, 可以作为导出组Ax=0的解向量有( )个。
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中 α1一α2,α1一2α2+α3,(α1一α3),α1+3α2一4α3, 可以作为导出组Ax=0的解向量有( )个。
admin
2018-12-19
70
问题
设α
1
,α
2
,α
3
均为线性方程组Ax=b的解,下列向量中
α
1
一α
2
,α
1
一2α
2
+α
3
,
(α
1
一α
3
),α
1
+3α
2
一4α
3
,
可以作为导出组Ax=0的解向量有( )个。
选项
A、4。
B、3。
C、2。
D、l。
答案
A
解析
由于Aα
1
=Aα
2
=Aα
3
=b,可知
A(α
1
—α
2
)=Aα
1
—Aα
2
=b—b=0,
A(α
1
一2α
2
+α
3
)=Aα
1
一2Aα
2
+Aα
3
=b一2b+b=0,
A[
(α
1
一α
3
)]=
(Aα
1
一Aα
3
)=
(b一b)=0,
A(α
1
+3α
2
—4α
3
)=Aα
1
+3Aα
2
一4Aα
3
=b+3b一4b=0。
这四个向量都是Ax=0的解。故选A。[img][/img]
转载请注明原文地址:https://kaotiyun.com/show/Qtj4777K
0
考研数学二
相关试题推荐
已知α1,α2是方程组的两个不同的解向量,则α=________.
设A是一个五阶矩阵,A*是A的伴随矩阵,若η,η是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=__________.
已知非齐次线性方程组554有3个线性无关的解,求a,b的值及方程组的通解.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A.
已知矩阵只有一个线性无关的特征向量,那么A的三个特征值是________.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA一1α≠b.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
已知函数f(x)=则厂(x)的一个原函数是___________.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
设函数y=y(x)由方程y=1一xey确定,则=___________.
随机试题
设函数f(x)=x2(一π<x<π)的傅里叶级数展开式,则其系数a2=_______.
该病人的最可能的诊断是该病人治疗中最主要的是
按形态学分类,再生障碍性贫血属于
治疗胃痛饮食停滞证,应首选()
女,43岁,右下腹持续性疼痛5天,伴恶心、呕吐,呕出物为胃内容物。体温38.5℃。体检发现右下腹5cm×5.5cm大小肿块,触痛明显。最可能的诊断是
(2005年)某投资项目全投资的净现金流量如下:若该项目初始投资中借款比例为50%,贷款年利率为8%,初始投资中自有资金的筹资成本为12%,则当计算该项目自有资金的净现值时,基准折现率至少应取()。
一个单因素方差分析中,已知F(2,24)=0.90。则F检验的结果
吴敬梓《儒林外史》
Properlightingisanecessaryforgoodeyesighteventhoughhumannightvisioncanbetemporarilyimpairedbyextremeflasheso
OnethingisclearafterthetragicdeathofFreddieGray,theyoungAfrican-Americanmanwhowasfatallyinjuredwhileinpolic
最新回复
(
0
)