首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,f(0)=0,f′(0)=1,且[xy(x+y)-f(x)y]dx+[f′(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设f(x)二阶连续可导,f(0)=0,f′(0)=1,且[xy(x+y)-f(x)y]dx+[f′(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
admin
2019-09-27
31
问题
设f(x)二阶连续可导,f(0)=0,f′(0)=1,且[xy(x+y)-f(x)y]dx+[f′(x)+x
2
y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
选项
答案
令P(x,y)=xy(x+y)-f(x)y,Q(x,y)=f′(x)+x
2
y,因为[xy(x+y)-f(x)y]dx+[f′(x)+x
2
y]dy=0为全微分方程,所以[*],即f″(x)+f(x)=x
2
, 解得f(x)=C
1
cosx+C
2
sinx+x
2
-2,由f(0)=0,f′(0)=1得C
1
=2,C
2
=1, 所以f(x)=2cosx+sinx+x
2
-2. 原方程为[xy
2
-(2cosx+sinx)y+2y]dx+(-2sinx+cosx+2x+x
2
y)dy=0,整理得 (xy
2
dx+x
2
ydy)+2(ydx+xdy)-2(ycosxdx+sinxdy)+(-ysinxdx+cosxdy)=0, 即d([*]x
2
y
2
+2xy-2ysinx+ycosx)=0, 原方程的通解为[*]x
2
y
2
+2xy-2ysinx+ycosx=C.
解析
转载请注明原文地址:https://kaotiyun.com/show/R6S4777K
0
考研数学一
相关试题推荐
设随机变量X和Y都服从正态分布,则()
设(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X,Y的相关系数为ρXY=一0.5,且P(aX+bY≤1)=0.5,则().
设总体X服从正态分布N(0,σ2),X1,X2,…,X10是取自总体X的简单随机样本,统计量(1<i<10)服从F分布,则i等于()
如果y=xex+x是微分方程y’’-2y’+ay=bx+c的解,则()
曲线y=的弧长为()
已知P-1AP=α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是()
设总体的概率密度为f(x;θ)﹦其中θ(θ>0)是未知参数,X1,X2,…,Xn为取自总体X的简单随机样本,求θ的矩估计量和最大似然估计量。
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得
假设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是来自X的简单随机样本,试求:端点θ置信水平为0.95的置信区间.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+.
随机试题
滑动轴承的摩擦状态大多数情况下处于()。
都是联绵词的一组是()
A.alotofmoneyB.expresspublicfeelingonlocalissuesC.morningD.localpeopleE.nationalissuesF.localissuesMany
冠状动脉CTA在临床应用广泛,关于冠状动脉CTA。冠状动脉CTA的适应证错误的是
商业银行贷给同一借款人的贷款金额不得超过银行资本金额的( )。
基金托管人应当履行的职责包括()等。
在收容教养期间,对被收容教养的未成年人实行( )方针。
根据所给材料,回答下面问题
建设生态文明,必须保护生态环境。保护生态环境的根本之策是
Inthepastdecade,newscientificdevelopmentsincommunicationshavechangedthewaymanypeoplegatherinformationaboutpoli
最新回复
(
0
)