首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
admin
2019-08-23
39
问题
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
,(2,-4,3,a+1)
T
皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
选项
答案
(1)因为r(A)=1,所以方程组AX=0的基础解系含有三个线性无关的解向量, 故(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
,(2,-4,3,a+1)
T
线性相关, 即[*]=0,解得a=6. (2)因为(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
线性无关, 所以方程组AX=0的通解为X=k
1
(1,-2,1,2)
T
+k
2
(1,0,5,2)
T
+k
3
(-1,2,0,1)
T
(k
1
,k
2
,k
3
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/RBA4777K
0
考研数学二
相关试题推荐
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是()。
交换积分次序∫1edx∫0lnxf(x,y)dy为()
设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系()
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意的x∈(一∞,+∞),f’(x)都存在,并求f(x)。
已知函数y=f(x)对一切的x满足xf’’(x)+3x[f’(x)]2=1一e—x,若f’(x0)=0(x0≠0),则()
计算下列反常积分(广义积分)。
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫—aa|x一t|f(t)dt。当x取何值时,F(x)取最小值;
积分=______。
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明:存在ξ∈(0,3),使f’’(ξ)=0。
设z=f(etsint,tant),求
随机试题
从实践来看,新录用公务员的实践锻炼时间一般为______。
关于用力呼吸的描述,不正确的是
表达于B细胞系急淋白血病的免疫标志是
《建设工程安全生产管理条例》规定,施工单位应当编制专项施工方案的分部分项工程有()。
盈余公积不包括()
已知风险组合M的期望报酬率和标准差分别为15%和20%,无风险报酬率为8%,假设某投资者除自有资金外还可以按无风险利率取得20%的资金,并将其投资于风险组合M。则投资组合的总期望报酬率和总标准差分别为()。
下图为石英光纤的损耗谱,其中的三个低损耗波长依次为图中的(1)、(2)和(3),有两处损耗峰的原因是(4)。目前,DWDM传输最常用的是(5)波段,对应于(6)微米窗口。常规型单模光纤(G652光纤)的零色散波长在(7)微米附近,而色散位移光纤(G653光
企业发展最基本,也是最核心的制约因素就是()
下列()不是存在主义提出的社会工作治疗过程的基本概念。
A、长江下游B、金沙江C、葛洲坝D、泥塘江B
最新回复
(
0
)