首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
admin
2019-08-23
73
问题
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
,(2,-4,3,a+1)
T
皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
选项
答案
(1)因为r(A)=1,所以方程组AX=0的基础解系含有三个线性无关的解向量, 故(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
,(2,-4,3,a+1)
T
线性相关, 即[*]=0,解得a=6. (2)因为(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
线性无关, 所以方程组AX=0的通解为X=k
1
(1,-2,1,2)
T
+k
2
(1,0,5,2)
T
+k
3
(-1,2,0,1)
T
(k
1
,k
2
,k
3
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/RBA4777K
0
考研数学二
相关试题推荐
已知矩阵只有一个线性无关的特征向量,那么A的三个特征值是______。
设y=f(x)是区间[0,1]上的任一非负连续函数。试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫—aa|x一t|f(t)dt。证明F’(x)单调增加;
设平面区域D是由参数方程0≤t≤2π给出的曲线与x轴围成的区域,求二重积分,其中常数a>0.
求线性方程组的通解,并求满足条件x12=x22的所有解.
求无穷积分.J=
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=()
曲线y=e1/x2arctan的渐近线有().
令[*]=t,则原式=∫arctan(1+t)d(t2)=t2arctan91+t)-∫t2/[1+(1+t)2]dt=t2arctan(1+t)-∫[1-((2t+2)/(t2+2t+2))]dt=t2arctan(1+t)-t+ln(t2+2t+2)+
随机试题
根据《刑法》的规定,下列可以适用死刑的情形是()。
患者女,56岁。因肉眼血尿就诊,行肾脏彩超及CT发现右肾实质性占位,大小约3cm,左肾结石,轻度肾盂积水。该患者适合的手术方式是
患者男,30岁。1年前下岗。近5个月来觉得邻居都在议论他,常不怀好意地盯着他,有时对着窗外大骂,自语、自笑,整天闭门,拨打110电话要求保护。该病例最可能的诊断是
发行人发行人民币债券所筹集的资金,可换成外汇转移至境外。( )
在公司稳定增长阶段,适宜采用低正常股利加额外股利政策。()
某些特色突出或极具个性化的饭店,若自身条件与星级评定标准规定的条件有所区别,则()。
黄某经营一店铺,由于经营不善,欠他人债务6000元。黄某在临死之前立自书遗嘱,将自己的全部财产4000元均等地分给了独子和一个老朋友,二人均表示接受。那么,关于黄某6000元债务的清偿,表述正确的是()。
材料一材料二1935年10月,中共中央率领中国工农红军第一方面军长征到达陕北后,陕甘苏区得到巩固与发展。1937年3月,中国共产党为团结抗日,经与国民党政府多次谈判,将陕甘苏区改为陕甘宁特区,5月改称陕甘宁边区,9月6日成立边区政府,林伯渠
实施可持续发展战略,必须坚持()协调统一发展的原则。
PassageThreeWhyarethecontrolsofamoderncarcriticized?
最新回复
(
0
)