首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,证明: r(A)=1且tr(A)≠0,证明A可相似对角化.
设A是n阶矩阵,证明: r(A)=1且tr(A)≠0,证明A可相似对角化.
admin
2021-01-14
31
问题
设A是n阶矩阵,证明:
r(A)=1且tr(A)≠0,证明A可相似对角化.
选项
答案
因为r(A)=1,所以存在非零列向量α,β,使得A=αβ
T
,显然tr(A)=(α,β),因为tr(A)≠0,所以(α,β)=k≠0. 令AX=λX,因为A
2
=kA,所以λ
2
X=kλX,或(λ
2
一kλ)X=0,注意到X≠0,所以矩阵A的特征值为λ=0或λ=k. 因为λ
1
+λ
2
+…+λ
n
=tr(A)=k,所以λ
1
=k,λ
2
=λ
3
=…=λ
n
=0,由r(0E—A)=r(A)=1,得A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/RD84777K
0
考研数学二
相关试题推荐
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向量α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
[2013年]设A=.B=,当a,b为何值时,存在矩阵C使得AC—CA=B,并求所有矩阵C.
设位于第一象限的曲线y=f(x)过点(,1/2),其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分。已知曲线y=sinx在[0,π]上的弧长为l,试用l表示曲线y=f(x)的弧长s。
设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0.证明向量组α,Aα,…,Ak-1α是线性无关的.
已知三阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x。计算行列式|A+E|。
记平面区域D={(x,y)||x|+|y|≤1},计算如下二重积分:其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;
设f(x)在[a,b]三次可微,证明:∈(a,b),使得f(b)=f(a)+(b-a)2f’’’(ξ).
设函数f(x)(x≥0)连续可微,f(0)=1,已知曲线y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线所围成的图形的面积与曲线y=f(x)在[0,x]上的弧长值相等,求f(x).
设函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=___________.
设则=______。[img][/img]
随机试题
1,一3,3,3,9,()。
尿潴留患者一次放出尿液不应超过
2013年检查某班13岁学生50名,其中患龋病者30名。2年后再对这50名学生检查。发现其中10名学生有新的龋损,则这班学生2年的龋病发病率为
某女患者,每于经前、经期大便泄泻,脘腹胀满,神疲肢倦,纳呆食少,月经量多,色淡质稀,面浮肢肿,舌淡胖,脉濡缓,其治疗的最佳方剂是
根据估计的总销售收入和估计的销售量来制定价格的定价方法是()。[2007年考题]
我国会计信息工作经历了()等几个阶段。
下列哪些情况不属于法律关系的范畴?()
甲、乙、丙和丁进入某围棋邀请赛半决赛,最后要决出一名冠军。张、王和李三人对结果做了如下预测:张:冠军不是丙。王:冠军是乙。李:冠军是甲。已知张、王、李三人中恰有一人预测正确,以下哪项为真?
在以下关于类的相关描述中,不正确的是______。
"LostCity"ExploredUsingHigh-SpeedNetworksUnderseaexplorationisnowascloseasthenearestcomputer."Telepresence"
最新回复
(
0
)