首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…n),二次型f(x1,x2,…,xn)=xixj。 (Ⅰ)记xT=(x1,x2,…,xn),把f(x1,x2,…,xn)=xixj。写成矩阵
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…n),二次型f(x1,x2,…,xn)=xixj。 (Ⅰ)记xT=(x1,x2,…,xn),把f(x1,x2,…,xn)=xixj。写成矩阵
admin
2018-04-18
36
问题
设A为n阶实对称矩阵,r(A)=n,A
ij
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…n),二次型f(x
1
,x
2
,…,x
n
)=
x
i
x
j
。
(Ⅰ)记x
T
=(x
1
,x
2
,…,x
n
),把f(x
1
,x
2
,…,x
n
)=
x
i
x
j
。写成矩阵形式,并证明二次型f(x)的矩阵为A
-1
;
(Ⅱ)二次型g(x)=x
T
Ax与f(x)的规范形是否相同?说明理由。
选项
答案
(Ⅰ)由题设条件, [*] 其中(*)的理由:A是可逆的实对称矩阵,故(A
-1
)
T
=(A
T
)
-1
=A
-1
,因此由实对称的定义知,A
-1
也是实对称矩阵,又由伴随矩阵的性质A
*
A=|A|E,知A
*
=|A|A
-1
,因此A
*
也是实对称矩阵,[*]=A
*
,故(*)成立。 (Ⅱ)因为(A
-1
)
T
AA
-1
=(A
T
)
-1
E=A
-1
,所以由合同的定义知A与A
-1
合同。 由实对称矩阵A与B合同的充要条件:二次型x
T
Ax与x
T
Bx有相同的正、负惯性指数。 可知,g(x)=x
T
Ax与f(x)有相同的正、负惯性指数,故它们有相同的规范形。
解析
转载请注明原文地址:https://kaotiyun.com/show/RpX4777K
0
考研数学三
相关试题推荐
设f(x)在[0,+∞)连续,且证明至少存在一点ξ∈(0,+∞),使得f(ξ)+ξ=0.
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记β=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解.
设A,B,C都是n阶矩阵,满足ABAC=E,则下列等式中不正确的是
设需求函数为P=a-bQ,总成本函数为C=Q3-7Q2+100Q+50,其中a,b>0为待定的常数,已知当边际收益MR=67,且需求价格弹性Ep=时,总利润是最大的.求总利润最大时的产量,并确定a,b的值.
已知α1=[1,2,-3,1]T,α2=[5,-5,a,11]T,α3=[1,-3,6,3]T,α4=[2,-1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4线性相关;(2)a为何值时,向量组α1,α2,α3,α4线性无关;(3)a
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是()
设A为n阶实矩阵,则对线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0,必有()
随机试题
简述拉美人做生意时的商业习惯。
对污染物评价可采用()
项目经理由兼职人员担任的工程项目管理组织结构是()的组织结构。
下列关于双代号网络图的表述中,正确的是()。
抵押权的标的物以()最为常见。
根据印花税法律制度的规定,下列印花税应税凭证中,适用定额税率的是()。
中国的近代警察是帝国主义入侵中国之后的产物。()
简述乔治.巴兰钦对美国芭蕾的影响。
SocialHistoryoftheEastEndofLondon1.lst-4thcenturiesProducefromtheareawasusedto【T1】______thepeopleofLondon.
Eagles,soaringhigh,powerful,andfearless,havealwaysmadepeoplethinkofstrength,freedomandcourage.Forthisreason,c
最新回复
(
0
)