首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2013年] 设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=___________.
[2013年] 设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=___________.
admin
2019-04-28
50
问题
[2013年] 设A=(a
ij
)是三阶非零矩阵,|A|为A的行列式,A
ij
为a
ij
的代数余子式,若a
ij
+A
ij
=0(i,j=1,2,3),则|A|=___________.
选项
答案
-1
解析
因a
ij
=-A
ij
,则(a
ij
)=(-A
ij
),(a
ij
)
T
=(-A
ij
)
T
=-(A
ij
),故A
T
=-A
*
,从而|A|=|A
T
|=|-A
*
|=(-1)
3
|A|
3-1
=-|A|
2
,即|A|
2
+|A|=|A|(|A|+1)=0,故|A|=0或|A|=-1.
若|A|=0,则由|A|=a
i1
A
i1
+a
i2
A
i2
+a
i3
A
i3
=(a
i1
2
+a
i2
2
+a
i3
2
)=0(i=1,2,3)得到a
ij
=0(i,j=1,2,3),即矩阵A为零矩阵,这与题设矛盾.故|A|=-1.
转载请注明原文地址:https://kaotiyun.com/show/RzJ4777K
0
考研数学三
相关试题推荐
设A=,已知A有三个线性无关的特征向量,且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设η1,…,ηS是非齐次线性方程组AX=b的一组解,则k1η1+…+kSηS,为方程组AX=b的解的充分必要条件是______.
设三阶矩阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2是三维列向量,且|A|=3,|B|=4,则|5A-2B|=______.
设随机变量X的密度函数f(x)=且P{1<X<2}=P{2<X<3},则常数A=________;B=________;概率P{2<X<4}=________;分布函数F(x)=________。
设随机变量X的分布函数为F(x),其密度函数为其中A为常数,则的值为()
两台同样的自动记录仪,每台无故障工作的时间服从参数为5的指数分布。首先开动其中一台,当其发生故障时停用,而另一台自行开动,试求两台记录仪无故障工作的总时间T的概率密度。
设(X,Y)的联合分布函数为其中参数λ>0,试求X与Y的边缘分布函数。
已知随机变量X服从(1,2)上的均匀分布,在X=x条件下Y服从参数为x的指数分布,则E(XY)=________。
若由曲线y=,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是().
设齐次线性方程组,有非零解,且A=为正定矩阵,求a,并求当|X|=时XTAX的最大值.
随机试题
甲公司为一家制衣公司,2021年计划销售增长率为25%,该增长率超出公司正常的增长水平较多,为了预测融资需求,安排超常增长所需资金,财务经理请你协助安排有关的财务分析工作,该项分析需要依据管理用财务报表进行,相关资料如下:资料一:30
急性阑尾炎的肌紧张在哪些病人中表现不明显
支原体肺炎自行消散的时间为
一般情况下,不会组织综合安全检查的人员是项目()。
会计科目是对会计对象的具体分类,同时也是对会计要素的具体分类。()
根据行政许可法的规定,下列各项中属于行政许可法调整范围的是__________。
“临床牙冠”指()。
某药品的售价虽降低了30%,但依旧保持了40%的较高利润率,那么未降价前的利润率为()。
Whereistheheadquarter?
A、50minutes.B、30minutes.C、25minutes.D、15minutes.A考查对时间的理解。对话中提供了三个时间,现在是8:30,去机场需要半个小时,飞机9:50才起飞,因此他们到达机场后还有50分钟时间办理登机手续
最新回复
(
0
)