首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的概率密度为若k使得P(X≥k)=2/3,则k的取值范围是__________.
设随机变量X的概率密度为若k使得P(X≥k)=2/3,则k的取值范围是__________.
admin
2019-01-05
74
问题
设随机变量X的概率密度为
若k使得P(X≥k)=2/3,则k的取值范围是__________.
选项
答案
1≤k≤3
解析
解一 由P(X≥k)=1-P(X<k)=2/3得到P(X<k)=1/3.这样就与分布函数完全对应起来了.再利用概率密度f(x)的定义就可算出有关结果.
当k<1时,
当1≤k≤3时,
当3<k≤6时,
于是欲使P(X≥k)=2/3,即使P(X<k)=1/3,k的取值范围为[1,3].
解二 作出f(x)的图形,如图3.2.4.1所示.因概率P(X≥k)在几何意义上表示x≥k时f(x)与x轴所围成的面积,而当1≤k≤3时,概率密度曲线与X轴围成的面积为
即P(X≥k)=2/3,故1≤k≤3.
转载请注明原文地址:https://kaotiyun.com/show/S0W4777K
0
考研数学三
相关试题推荐
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,。其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。(Ⅰ)求L的方程;(Ⅱ)当L与直线y=ax所围成平面图形的面积为时,确定a的值。
设二维随机变量(X,Y)的概率密度为f(x,y)=(Ⅰ)计算两个边缘概率密度;(Ⅱ)求条件概率密度fX|Y(y|x=2);(Ⅲ)求条件概率P{Y≤1|X≤1}。
已知(X,Y)在以点(0,0),(1,—1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x)fY(y)及条件密度函数fX|Y(x|y),fY|X(y|x);并问X与Y是否独立;
设f(x)=∫—1xt|t|dt(x≥—1),求曲线y=f(x)与x轴所围封闭图形的面积。
假设随机变量X1,X2,X3,X4相互独立且都服从0—1分布:P{Xi=1}=p,P{Xi=0}=1—p(i=1,2,3,4,0<p<1),已知二阶行列式的值大于零的概率等于,则p=________。
设二维随机变量(X,Y)在区域G={(x,y)|1≤x+y≤2,0≤y≤1}上服从均匀分布。试求:(Ⅰ)(X,Y)的边缘概率密度fX(x)和fY(y);(Ⅱ)Z=X+Y的概率密度fZ(z)。
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn—r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn—r=ξn—r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ0η
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.(1)试将x=x(y)所满足的微分方程=0变换为y=y(x)所满足的微分方程.(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)
设有甲、乙两名射击运动员,甲命中目标的概率是0.6,乙命中目标的概率是0.5,求下列事件的概率:从甲、乙中任选一人去射击,若目标被命中,则是甲命中的概率;
随机试题
A.发作性眩晕、耳鸣、听力减弱B.伴鼓膜穿孔C.渐进性眩晕、耳鸣、听力减退、口周麻木D.头部处在一定位置时眩晕E.上感后眩晕、恶心、呕吐、无耳鸣及听力减退上述临床表现符合哪种疾病内耳药物中毒
A、CMB、LDLC、VLDLD、HDLE、IDL体内主要运输外源性甘油三酯的是
葡萄球菌肺炎抗生素治疗的疗程是
单室模型多剂量静脉注射给药稳态最大血药浓度公式是()。
商业汇票的承兑期限最长不超过()。
该公司2003年的资产净利率为()。该公司2003年的应收账款周转率为()次。
依据新的《企业所得税法》,下列适用20%比例税率的是( )。
以下是一个教学片断,找出其中所运用的教学原则。教师:讲课之前,同学们请先告诉我,我手里现在拿的是什么?学生:土豆/马铃薯。教师:对,同学们都很熟悉,也很常见,而且也有不少人喜欢吃吧。那么,马铃薯的发源地是在中国吗?学
阅读下列材料并回答问题材料12004年4月26日,中国国务院新闻办发表《中国的就业状况和政策》白皮书。白皮书指出,中国有近13亿人口,是世界上人口最多的国家,解决就业问题任务繁重、艰巨、紧迫。白皮书指出,近年来,在就业压力持续加大的情况下,
ICMPisshortforInternet(71)MessageProtocol,andisanintegralpartoftheInternet(72)suite(commonlyreferredtoas
最新回复
(
0
)