设f(x),g(x)在[a,b]上连续,﹣π/2≤<b≤π/2,F(x)=∫ax[f(t)-g(t)]dt,当x∈[a,b]时,F(x)≤0,且F(b)=0,则( )

admin2022-06-09  6

问题 设f(x),g(x)在[a,b]上连续,﹣π/2≤<b≤π/2,F(x)=∫ax[f(t)-g(t)]dt,当x∈[a,b]时,F(x)≤0,且F(b)=0,则(          )

选项 A、 
B、 
C、 
D、 

答案D

解析ab[f(x)-g(x)]sin xdx=∫absin xd[F(x)]
=F(x)sinx|ab-∫abF(x)cosxdx
=-∫abF(x)cos xdx
当x∈[a,b]时,F(x)≤0,故-∫abF(x)cos xdx≥0,D 正确
转载请注明原文地址:https://kaotiyun.com/show/S2f4777K
0

最新回复(0)