首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶方阵,α1,α2,α3是三维线性无关的列向量组,且Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2。 矩阵A是否可对角化?
设A是三阶方阵,α1,α2,α3是三维线性无关的列向量组,且Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2。 矩阵A是否可对角化?
admin
2019-02-23
65
问题
设A是三阶方阵,α
1
,α
2
,α
3
是三维线性无关的列向量组,且Aα
1
=α
2
+α
3
,Aα
2
=α
3
+α
1
,Aα
3
=α
1
+α
2
。
矩阵A是否可对角化?
选项
答案
因为α
1
,α
2
,α
3
线性无关,而 (α
1
+α
2
+α
3
,α
2
一α
1
,α
3
一α
1
)=(α
1
,α
2
,α
3
)[*]=(α
1
,α
2
,α
3
)P, 且|P|=3≠0,所以α
2
一α
1
,α
3
一α
1
,α
1
+α
2
+α
3
线性无关,即矩阵A有三个线性无关的特征向量,所以矩阵A可相似对角化。
解析
转载请注明原文地址:https://kaotiyun.com/show/S4j4777K
0
考研数学二
相关试题推荐
设f(x)=,讨论f(x)的单调性,凹凸性,拐点,水平渐近线.
设B=,求B-1
设3阶矩阵A有3个特征向量η1=(1,1,1)T,η2=(1,2,4)T,η3=(1,3,9)T,它们的特征值依次为1,2,3.又设α=(1,1,3)T,求Anα.
已知α=是可逆矩阵A=的伴随矩阵A*的特征向量,特征值λ.求a,b,λ.
用分部积分法.[*]
设α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.P为什么数时,α1,α2,α3,α4线性相关?此时求r(α1,α2,α3,α4)和写出一个最大无关组.
已知ξ是n维列向量,且ξTξ=1,设A=E-ξξT,证明:|A|=0.
设f(χ)与g(χ)在[a,b]上连续,且同为单调不减(或同单调不增)函数,证明:(b-a)∫abf(χ)g(χ)dχ≥∫abf(χ)dχ∫abg(χ)dχ.(*)
已知齐次方程组为其中ai≠0.(1)讨论a1,a2,…,an和b满足何种关系时方程组有非零解;(2)在方程组有非零解时,写出一个基础解系.
设L是一条平面曲线,其上任意一点m(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形面积最小。
随机试题
Excel2000中,假定B4,B5单元格中的内容为“河北”、“大学”,若要使B6单元格中的内容为“河北大学”,应在B6单元格中建立公式为______。
直线与平面4x-2y-2z=3的位置关系是()
A.主承托区B.副承托区C.边缘封闭区D.缓冲区E.翼缘区下颌全口义齿的内、外斜嵴及牙槽嵴上的一切骨突区属于
下表中数据为颗粒分析试验的部分试验数据,取土总质量为3000g,请回答以下问题:根据以上试验数据,计算孔径为5mm筛的通过率为()。
在下列各项费用中,属于“管理费用”项目的有()。
学校文化建设有多个落脚点,其中,课堂教学是学校文化建设的主渠道。在课堂教学中,教师必须注意加强学校文化和学科文化建设,这主要有利于落实课程三维目标中的()。
以下史学著作开创了史学新纪元的是()。
带薪休假
【B1】【B10】
AftermonthsofspeculationaboutwhatAmazoncomwoulddowithitsmysterioussearch-enginecompany,A9,Websuffersfinallygo
最新回复
(
0
)