首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X和Y相互独立,且X~Y(1,2),Y~N(一3,4),则随机变量Z=一2X+3Y+5的概率密度为f(z)=_________.
设随机变量X和Y相互独立,且X~Y(1,2),Y~N(一3,4),则随机变量Z=一2X+3Y+5的概率密度为f(z)=_________.
admin
2018-11-20
44
问题
设随机变量X和Y相互独立,且X~Y(1,2),Y~N(一3,4),则随机变量Z=一2X+3Y+5的概率密度为f(z)=_________.
选项
答案
[*]
解析
因为两个相互独立的正态随机变量的线性函数仍然服从正态分布,所以Z=一2X+3Y+5服从正态分布.要求f(z)=
,则需确定参数μ与σ的值.又E(Z)=μ,D(Z)=σ
2
,因此归结为求E(Z)与D(z).根据数学期望和方差的性质及
E(X)=1, D(X)=2, E(Y)=一3, D(Y)=4,
可得 E(Z)=E(一2X+3Y+5)=一2E(X)+3E(Y)+5
=(一2)×1+3×(一3)+5=一6,
D(Z)=D(一2X+3Y+5)=(一2)
2
D(X)+3
2
D(Y)=4×2+9×4=44.
因此Z的概率密度为
转载请注明原文地址:https://kaotiyun.com/show/S5W4777K
0
考研数学三
相关试题推荐
计算行列式
设有三个线性无关的特征向量,则a=________.
设A,B满足A*BA=2BA一8E,且A=,求B.
设为正定矩阵,令P=证明:D=BA一1BT为正定矩阵.
二次型f(x1,x2,x3)=x12+ax22+x32一4x1x2一8x1x3一4x2x3经过正交变换化为标准形5y12+by22一4y32,求:正交变换的矩阵Q.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f()一1,f(1)=0.证明:对任意的k∈(一∞,+∞),存在ξ∈(0,η),使得f’(ξ)一k[f(ξ)一ξ]=1.
设二维随机变量(X,Y)的密度函数为(1)问X,Y是否独立?(2)分别求U=X2和V=Y2的密度函数fU(u)和fV(v),并指出(U,V)服从的分布;(3)求P(U2+V2≤1).
设随机变量X的分布函数为对X独立观测3次,则3次结果都不超过1的概率为________.
随机试题
二梅出自于()
矛盾问题的精髓是()。
小青龙汤的治疗病证有
关于海洋运输货物保险,下列哪一选项是正确的?(卷一/2010年第43题)
承包商提出施工索赔时,应提供的依据包括( )。
某市建筑公司承建某县政府办公楼,工程不合税造价为1000万元,则该施工企业应缴纳的营业税、城市维护建设税和教育费附加分别是()万元。
选择计数调整型抽样方案时,为降低使用方风险可选择()。[2007年真题]
安居工程
Readtheextractfromanarticleaboutnegotiationbelow.Inmostofthelines(41-52),thereisoneextraword.Iteitheris
()就业办公室()研究生部()校长办公室()运动中心
最新回复
(
0
)