首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X和Y相互独立,且X~Y(1,2),Y~N(一3,4),则随机变量Z=一2X+3Y+5的概率密度为f(z)=_________.
设随机变量X和Y相互独立,且X~Y(1,2),Y~N(一3,4),则随机变量Z=一2X+3Y+5的概率密度为f(z)=_________.
admin
2018-11-20
64
问题
设随机变量X和Y相互独立,且X~Y(1,2),Y~N(一3,4),则随机变量Z=一2X+3Y+5的概率密度为f(z)=_________.
选项
答案
[*]
解析
因为两个相互独立的正态随机变量的线性函数仍然服从正态分布,所以Z=一2X+3Y+5服从正态分布.要求f(z)=
,则需确定参数μ与σ的值.又E(Z)=μ,D(Z)=σ
2
,因此归结为求E(Z)与D(z).根据数学期望和方差的性质及
E(X)=1, D(X)=2, E(Y)=一3, D(Y)=4,
可得 E(Z)=E(一2X+3Y+5)=一2E(X)+3E(Y)+5
=(一2)×1+3×(一3)+5=一6,
D(Z)=D(一2X+3Y+5)=(一2)
2
D(X)+3
2
D(Y)=4×2+9×4=44.
因此Z的概率密度为
转载请注明原文地址:https://kaotiyun.com/show/S5W4777K
0
考研数学三
相关试题推荐
设的一个特征值为λ1=2,其对应的特征向量为ξ1=判断A是否可对角化,若可对角化,求可逆矩阵P,使得P一1AP为财角矩阵.若不可对角化,说明理由.
设矩阵为A*对应的特征向量.判断A可否对角化.
设有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设n阶矩阵A满足A2+2A一3E=0.求:(A+4E)一1.
设四阶矩阵B满足BA一1=2AB+E,且A=,求矩阵B.
设A=,B为三阶非零矩阵,且AB=0,则r(A)=________.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得
设随机变量且协方差cov(X,Y)=则X与Y的联合分布为________.
设随机变量X的分布函数为对X独立观测3次,则3次结果都不超过1的概率为________.
随机试题
男性,21岁,2年前因工作环境压抑辞职,之后将自己封闭起来,整天睡觉,无论做什么工作,做不久就辞职,继续回家睡觉,喜欢一个人待着,不喜欢和人交往,无事可做时就只有睡觉,除了吃饭基本都是在床上度过。该患者的诊断最可能是()
男性,50岁。1个月来气短、呼吸困难,1周来发热、咳嗽,B超发现“右侧大量胸腔积液”。近半年日渐消瘦。查体:T37.5℃,R21次/分,轻度贫血貌,高枕右侧卧位。该患者胸部叩诊不可能出现的体征是
关于精索静脉曲张的超声描述,正确的是
A.肝脏B.肾脏C.肺D.口腔E.小肠药物代谢的主要器官是
市场调查方案设计过程中的第一步是()。
根据支付结算法律制度的规定,下列各项中,属于无效票据的有()。
工厂拖欠职工工资,有人反映工厂主要领导大吃海喝,上级领导让你去调查。你如何做?
(2011年单选28)下列关于我国县级人民政府的表述,正确的是()。
A、 B、 C、 D、 A
NewFoodsandtheNewWorldInthelast500years,nothingaboutpeople-nottheirclothes,ideas,orlanguages-haschangeda
最新回复
(
0
)