首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X和Y相互独立,且X~Y(1,2),Y~N(一3,4),则随机变量Z=一2X+3Y+5的概率密度为f(z)=_________.
设随机变量X和Y相互独立,且X~Y(1,2),Y~N(一3,4),则随机变量Z=一2X+3Y+5的概率密度为f(z)=_________.
admin
2018-11-20
53
问题
设随机变量X和Y相互独立,且X~Y(1,2),Y~N(一3,4),则随机变量Z=一2X+3Y+5的概率密度为f(z)=_________.
选项
答案
[*]
解析
因为两个相互独立的正态随机变量的线性函数仍然服从正态分布,所以Z=一2X+3Y+5服从正态分布.要求f(z)=
,则需确定参数μ与σ的值.又E(Z)=μ,D(Z)=σ
2
,因此归结为求E(Z)与D(z).根据数学期望和方差的性质及
E(X)=1, D(X)=2, E(Y)=一3, D(Y)=4,
可得 E(Z)=E(一2X+3Y+5)=一2E(X)+3E(Y)+5
=(一2)×1+3×(一3)+5=一6,
D(Z)=D(一2X+3Y+5)=(一2)
2
D(X)+3
2
D(Y)=4×2+9×4=44.
因此Z的概率密度为
转载请注明原文地址:https://kaotiyun.com/show/S5W4777K
0
考研数学三
相关试题推荐
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E一ααT,B=E+ααT,且B为A的逆矩阵,则a=________.
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设的一个特征值为λ1=2,其对应的特征向量为ξ1=判断A是否可对角化,若可对角化,求可逆矩阵P,使得P一1AP为财角矩阵.若不可对角化,说明理由.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A一1的特征值并判断A一1是否可对角化.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且=M.证明:f’(x0)=M.
设X和Y为相互独立的连续型随机变量,它们的密度函数分别为f1(x),f2(x),它们的分布函数分别为F1(x),F2(x),则().
设随机变量X1和X2相互独立同分布(方差大于零),令X=X1+aX2,Y=X1+bX2(a,b均不为零).如果X与y不相关,则().
设X1,X2,…,X7为来自总体X~N(0,1)的简单随机样本,随机变量Y=(X1+X2+X3)2+(X4+X5+X6)2,则当C=________时,服从参数为________的t分布.
设随机变量且协方差cov(X,Y)=则X与Y的联合分布为________.
随机试题
销售促进应避免的情况是_______。
提出中国共产党的工作重心由农村转移城市,开始由城市领导农村新时期的是()。
A.呕大量鲜血,可伴有血块B.强烈呕吐,先胃液后鲜血与血块C.柏油便伴腹痛、寒战、高热与黄疸D.柏油样大便E.鲜血样大便胆道出血多有
眩晕耳鸣,头目胀痛,口苦,失眠多梦,遇烦劳郁怒而加重,甚则仆倒,颜面潮红,急躁易怒,肢麻震颤,舌红,苔黄,脉弦数,宜选用
来源于伞形科植物的药材有
明朝强调法律的规范作用,在各方面都进行了比较完备的管理法规立法建设。对于监察方面的立法,以下属于监察管理法规的是()。
下列属于承包人和专业工程分包人的共同责任或工作的是()。
期限在1年以内的贷款实行的是()利率政策。
多媒体技术是()。
下列描述中错误的是
最新回复
(
0
)