首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)若A可逆且A~B,证明:A*~B*; (2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
(1)若A可逆且A~B,证明:A*~B*; (2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
admin
2018-05-21
26
问题
(1)若A可逆且A~B,证明:A
*
~B
*
;
(2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
选项
答案
(1)因为A可逆且A~B所以B可逆,A,B的特征值相同且|A|=|B|. 因为A~B,所以存在可逆矩阵P,使得P
-1
AP=B, 而A
*
=|A|A
-1
,B
*
=|B|B
-1
, 于是由P
-1
AP=B,得(P
-1
AP)
-1
=B
-1
,即P
-1
A
-1
P=B
-1
, 故P
-1
|A|A
-1
P—=|A|B
-1
或P
-1
A
*
P=B
*
,于是A
*
~B
*
. (2)因为A~B,所以存在可逆阵P,使得P
-1
AP=B,即AP=PB, 于是AP=PBPP
-1
=P(BP)P
-1
,故AP~BP.
解析
转载请注明原文地址:https://kaotiyun.com/show/S7r4777K
0
考研数学一
相关试题推荐
设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意的t>0都有f(tx,ty)=t—2一f(x,y).证明对D内的任意分段光滑的有向简单闭曲线L,都有∮Lyf(x,y)dx一xf(x,y)dy=0.
设矩阵有一个特征值是3.(Ⅰ)求y的值;(Ⅱ)求正交矩阵P,使(AP)TAP为对角矩阵;(Ⅲ)判断矩阵A2是否为正定矩阵,并证明你的结论.
已知f(x)在[0,2]上连续,在(0,2)内二阶可导,且∫12f(x)dx=f(2).证:ε∈(0,2),使f’(ε)+f"(ε)=0.
设f(x)为微分方程y’一xy=g(x)满足y(0)=1的解,其中g(x)=∫0xsin[(x—t)2]dt,则有()
设,B=A一1,则B的伴随矩阵B*的所有元素之和等于________.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵A的特征值;
设X1,X2,…,Xn是来自总体X的简单随机样本,且总体X的密度函数为求θ的极大似然估计量
检查产品质量时,在生产过程中每次抽取10个产品来检查,抽查100次,得到每10个产品中次品数的统计分布如下:利用χ2拟合检验准则检验生产过程中出现次品的概率是否可以认为是不变的,即每次抽查的10个产品中的次品数是否服从二项分布.(取显著性水平α=0.0
某产品废品率为3%,采用新技术后对产品重新进行抽样检验,检查是否产品次品率显著降低,取显著水平为0.05,则原假设为H0:__________,犯第一类错误的概率为__________.
随机试题
能力不是天生的,不是自然恩赐的,而是社会实践培养的结果。()
下列属于无编号的法律文书的是()
《医疗事故处理条例》规定,造成患者轻度残疾、器官组织损伤导致一般功能障碍的属于
A.清热解暑B.祛风除痹C.健脾宁心D.通气下乳E.化痰止咳虎杖的功效是
急性出血性坏死型胰腺炎的重要特征是( )。
不属于肉芽肿性炎的疾病是()
A.药品批发组织的职能B.药品销售代理组织的职能C.药品零售组织的职能D.药品物流组织的职能E.传统药品交易中介服务组织的职能保证药品购进的合法性和质量、保证售出药品的质量和药学服务的质量是()。
甲状腺手术后最危重的并发症为()
设备监理的依据主要有()。
阅读以下说明,回答问题1~问题5,将解答填入对应的解答栏内。[说明]在Linux环境下使用的FTP服务器软件主要有Wu-FTP、NcFTP和ProPTP三种,其中Wu-FTP是目前最流行的一种免费FTP服务器软件,某单位就使用该软件架设
最新回复
(
0
)