首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2017年] 设函数在[0,1]上具有二阶导数,且f(1)>0,.证明: 方程f(x)f’’(x)+[f’(x)]2=0在(0,1)内至少有两个不同的实根.
[2017年] 设函数在[0,1]上具有二阶导数,且f(1)>0,.证明: 方程f(x)f’’(x)+[f’(x)]2=0在(0,1)内至少有两个不同的实根.
admin
2019-04-08
44
问题
[2017年] 设函数在[0,1]上具有二阶导数,且f(1)>0,
.证明:
方程f(x)f’’(x)+[f’(x)]
2
=0在(0,1)内至少有两个不同的实根.
选项
答案
由罗尔定理知,存在ξ
2
∈(0,ξ
1
),使得f’(ξ
2
)=0. 构造辅助函数F(x)=f(x)f’(x),则F(0)=F(ξ
2
)=F(ξ
1
)=0. 再根据罗尔定理可得,存在η
1
∈(0,ξ
2
),η
2
∈(ξ
2
,ξ
1
),使得 F’(η
1
)=F’(η
2
)=0.结论得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/SD04777K
0
考研数学一
相关试题推荐
设A,B为满足AB=O的任意两个非零矩阵,则必有()
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为(Ⅰ)求矩阵A;(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2。α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为三阶单位矩阵。(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B。
设随机变量X的概率密度为f(x)=令随机变量(Ⅰ)求Y的分布函数;(Ⅱ)求概率P{X≤Y}。
求幂级数(|x|<1)的和函数S(x)及其极值.
在[0,+∞)上给定曲线y=y(x)>0,y(0)=2,y(x)有连续导数.已知x>0,[0,x]上一段绕x轴旋转所得侧面积等于该段旋转体的体积,求曲线y=y(x)的方程.
在R4中求一个单位向量,使它与α1=(1,1,-1,1)T,α2=(1,-1,-1,1)T,α3=(2,1,1,3)T都正交.
设A为m阶实对称阵且正定,B为m×n实矩阵,BT为B的转置矩阵.试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设线性方程组λ为何值时,方程组有解,有解时,求出所有的解.
随机试题
二梅出自于()
矛盾问题的精髓是()。
小青龙汤的治疗病证有
关于海洋运输货物保险,下列哪一选项是正确的?(卷一/2010年第43题)
承包商提出施工索赔时,应提供的依据包括( )。
某市建筑公司承建某县政府办公楼,工程不合税造价为1000万元,则该施工企业应缴纳的营业税、城市维护建设税和教育费附加分别是()万元。
选择计数调整型抽样方案时,为降低使用方风险可选择()。[2007年真题]
安居工程
Readtheextractfromanarticleaboutnegotiationbelow.Inmostofthelines(41-52),thereisoneextraword.Iteitheris
()就业办公室()研究生部()校长办公室()运动中心
最新回复
(
0
)