首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表达式的系数全不为零.证明:α1,α2,…,αs,β中任意s个向量均线性无关.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表达式的系数全不为零.证明:α1,α2,…,αs,β中任意s个向量均线性无关.
admin
2021-07-27
63
问题
已知α
1
,α
2
,…,α
s
线性无关,β可由α
1
,α
2
,…,α
s
线性表出,且表达式的系数全不为零.证明:α
1
,α
2
,…,α
s
,β中任意s个向量均线性无关.
选项
答案
用反证法.设α
1
,α
2
,…,α
s
,β中存在s个向量α
1
,α
2
,…,α
i-1
,α
i+1
,…,α
s
,β线性相关,则存在不全为零的数k
1
,k
2
,…,k
i-1
,k
i+1
,…,k
s
,k,使得k
1
α
1
+…+k
i-1
α
i-1
+k
i+1
α
i+1
+…+k
s
α
s
,kβ=0.另一方面,由题设有β=l
1
α
1
+l
2
α
2
+…+l
i
α
i
+…+l
s
α
s
,其中l
i
≠0,i=1,2,…,s.代入上式,得(k
1
+kl
1
)α
1
+(k
2
+kl
2
)α
2
+…+(k
i-1
+kl
i-1
)α
i-1
+kl
i
α
i
+(k
i+1
+kl
i+1
)α
i-1
+…+(k
s
+kl
s
)α
s
=0.因α
1
,α
2
,…,α
s
线性无关,从而有kl
i
=0,l
i
≠0,得k=0,从而得k
1
,k
2
,…,k
i-1
,k
i+1
,…,k
s
均为零,矛盾.故α
1
,α
2
,…,α
s
,β中任意s个向量均线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/SQy4777K
0
考研数学二
相关试题推荐
设函数f(x)连续,则在下列变限积分定义的函数中,必为偶函数的是()
求微分方程y〞+y=χ2+3+cosχ的通解.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。求AB一1。
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是()。
设为正项级数,则下列结论正确的是()
设α1,α2,…,αs均为n维列向量,A是m×n,矩阵,则下列选项中正确的是()
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
向量组α1,α2,…,αs线性无关的充分条件是
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n-r(A)+1.
随机试题
简述意识障碍的分类。
血清区带电泳测定M蛋白,可用以
胆囊肿大呈囊性感,无压痛者,见于壶腹周围癌。胆囊肿大,有实性感者,可见于胆囊结石或胆囊癌。
呃逆病变的关键脏腑是
长距离金属电缆桥架应每隔()距离接地一次。
下列关于证券公司合规负责人的说法,正确的有()。I.合规负责人应对证券公司经营管理行为的合法合规性进行审查、监督或者检查Ⅱ.独立董事可担任合规负责人Ⅲ.合规负责人由股东大会决定聘任Ⅳ.证券公司解聘合规负责人,
下列业务属于增值税征收范围的有()。
读下图,回答问题。甲大陆①自然带与乙大陆⑤自然带类型相同,关于其成因,正确的是()。
设f(χ,y)是定义在区域0≤χ≤1,0≤y≤1上的二元连续函数,f(0,0)=-1,求极限=________.
Pandemic(大面积流行的)H1N12009ThemostactiveareasofpandemicinfluenzatransmissioncurrentlyareincentralandeasternEur
最新回复
(
0
)