首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表达式的系数全不为零.证明:α1,α2,…,αs,β中任意s个向量均线性无关.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表达式的系数全不为零.证明:α1,α2,…,αs,β中任意s个向量均线性无关.
admin
2021-07-27
44
问题
已知α
1
,α
2
,…,α
s
线性无关,β可由α
1
,α
2
,…,α
s
线性表出,且表达式的系数全不为零.证明:α
1
,α
2
,…,α
s
,β中任意s个向量均线性无关.
选项
答案
用反证法.设α
1
,α
2
,…,α
s
,β中存在s个向量α
1
,α
2
,…,α
i-1
,α
i+1
,…,α
s
,β线性相关,则存在不全为零的数k
1
,k
2
,…,k
i-1
,k
i+1
,…,k
s
,k,使得k
1
α
1
+…+k
i-1
α
i-1
+k
i+1
α
i+1
+…+k
s
α
s
,kβ=0.另一方面,由题设有β=l
1
α
1
+l
2
α
2
+…+l
i
α
i
+…+l
s
α
s
,其中l
i
≠0,i=1,2,…,s.代入上式,得(k
1
+kl
1
)α
1
+(k
2
+kl
2
)α
2
+…+(k
i-1
+kl
i-1
)α
i-1
+kl
i
α
i
+(k
i+1
+kl
i+1
)α
i-1
+…+(k
s
+kl
s
)α
s
=0.因α
1
,α
2
,…,α
s
线性无关,从而有kl
i
=0,l
i
≠0,得k=0,从而得k
1
,k
2
,…,k
i-1
,k
i+1
,…,k
s
均为零,矛盾.故α
1
,α
2
,…,α
s
,β中任意s个向量均线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/SQy4777K
0
考研数学二
相关试题推荐
设f(0)=0,则f(χ)在点χ=0可导的充要条件为【】
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
微分方程y’’一λ2y=eλx+e-λx(λ>0)的特解形式为()
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
设常数k>0,函数在(0,+∞)内零点个数为()
设n(n≥3)阶矩阵若r(A)=n一1,则a必为
下列矩阵中不能相似于对角阵的矩阵是
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3,线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(
随机试题
A、 B、 C、 D、 D
护士在候诊室巡视时,发现一年轻女患者精神不振,询问后患者诉肝区隐痛,疲乏,食欲差,双眼巩膜黄染。检查:尿三胆(++)。护士应
某甲自有城市房屋1间,2006年3月1日其与乙签订一份为期3年的房屋租赁合同由乙承租该房。同年8月6日丙向甲提出愿意购买该房屋,甲即将要出卖该房屋的情况告知乙。到了11月7日乙没有任何答复,甲与丙协商以50万元的价格将该房卖给丙,双方签订了房屋买卖合同,丙
措施项目清单的设置应______。
现代企业的核心价值理念一般构成有哪些?
阅读下列材料,回答问题。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:()
简述数据库设计中要进行关系规范化的必要性。
Whatisthenearestvalueof?
A、Sheforgotthetime.B、Shedidn’ttakeenoughlessons.C、Shewassonervousthatshecouldn’tconcentrate.D、Theinstructorla
最新回复
(
0
)