首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(11年)设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由χ-y=0,χ+y=2与y=0所围成的三角形区域. (Ⅰ)求X的概率密度fx(χ); (Ⅱ)求条件概率密度fX|Y(χ|y).
(11年)设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由χ-y=0,χ+y=2与y=0所围成的三角形区域. (Ⅰ)求X的概率密度fx(χ); (Ⅱ)求条件概率密度fX|Y(χ|y).
admin
2017-05-26
33
问题
(11年)设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由χ-y=0,χ+y=2与y=0所围成的三角形区域.
(Ⅰ)求X的概率密度f
x
(χ);
(Ⅱ)求条件概率密度f
X|Y
(χ|y).
选项
答案
G的面积S
G
=[*]×2×1=1,故(X,Y)的概率密度为: [*] (Ⅰ)f
x
(χ)=∫
-∞
+∞
f(χ,y)dy χ≤0或χ≥2时,f
x
(χ)=0; 0<χ<1时,f
x
(χ)=∫
0
χ
dy=χ; 1≤χ<2时,f
x
(χ)=∫
0
2-χ
dy=2-χ ∴f(χ)=[*] (Ⅱ)关于Y的边缘概率密度为:f
Y
(y)=∫
-∞
+∞
f(χ,y)dχ y≤0或y≥1时,f
Y
(y)=0; 0<y<1时,f
Y
(y)=∫
y
2-y
dχ=2(1-y) ∴f
Y
(y)=[*] 故0<y<1时, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/hkH4777K
0
考研数学三
相关试题推荐
设随机变量X和Y,都服从标准正态分布,则().
[*]设则
假设X1,X2,…,Xn为来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4),证明:当n充分大时,随机变量近似服从正态分布,并指出其分布参数.
假设一厂家生产的每台仪器,以概率0.70可以直接出厂,以概率0.30需进一步调试,经调试后以概率0.80可以出厂,以概率0.20定为不合格品不能出厂,现该厂新生产了n(n≥2)台仪器(假设各台仪器的生产过程相互独立),求:(I)全部能出厂的概率a;(Ⅱ
设X1,X2,…,Xn是来自正态总体X的简单随机样本,Y1=1/6(X1+…+X6),Y2=1/3(X7+X8+X9),S2=(X1-Y2)2,Z=,证明统计量Z服从自由度为2的t分布.
设X1,X,…,Xn为来自总体N(μ,σ2)的简单随机样本,为样本均值,记则服从自由度为n-1的t分布的随机变量是().
设f(u,v)具有二阶连续偏导数,且满足
设二维连续型随机变量的联合概率密度为确定a的值,使.
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
现有奖券100万张,其中一等奖1张,奖金5万元;二等奖4张,每张奖金2500元;三等奖40张,每张奖金250元;四等奖400张,每张奖金25元,而每张奖券2元,试计算买一张奖券的平均收益。
随机试题
多在市场初步调查或对市场情况不甚明确时采用,在正式市场调查中较少采用的抽样方法是________。
求函数的单调区间和极值.
Ⅰ型高脂蛋白血症是指空腹血浆
涉及会计人员违法的职业行为主要包括()。
某公司息税前利润为2000万元,净利润全部分配,公司适用的所得税税率为25%,公司目前总资金为8000万元,全部是权益资金。公司准备用发行债券回购股票的办法调整资本结构,有两种调整方案。经咨询调查,目前无风险收益率为6%,所有股票的平均收益率为16%。假设
根据下面材料回答下列题。在下列时间的分配上,城镇居民和农村居民差异最大的一项是()。
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=,r(B)=2.(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
下列关于Applet的叙述中,正确的是
窗体上有名称为Command1的命令按钮,名称分别为Label1、Label2、Labe3的标签。编写如下程序:PrivatexAsIntegerPrivateSubCommand1_Click()StaticyAsIntegerD
In1847mostcountriesoftheworldwere
最新回复
(
0
)