首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(00年)设有n元实二次型 f(χ1,χ2,…,χn)=(χ1+a1χ2)2+(χ2+a2χ3)2+…+(χn-1+an-1χn)+(χn+anχ1)2, 其中a1(i=1,2,…,n)为实数.试问:当a1,a2…,an满足何种条件时,二次
(00年)设有n元实二次型 f(χ1,χ2,…,χn)=(χ1+a1χ2)2+(χ2+a2χ3)2+…+(χn-1+an-1χn)+(χn+anχ1)2, 其中a1(i=1,2,…,n)为实数.试问:当a1,a2…,an满足何种条件时,二次
admin
2017-05-26
70
问题
(00年)设有n元实二次型
f(χ
1
,χ
2
,…,χ
n
)=(χ
1
+a
1
χ
2
)
2
+(χ
2
+a
2
χ
3
)
2
+…+(χ
n-1
+a
n-1
χ
n
)+(χ
n
+a
n
χ
1
)
2
,
其中a
1
(i=1,2,…,n)为实数.试问:当a
1
,a
2
…,a
n
满足何种条件时,二次型f(χ
1
,χ
2
,…,χ
n
)为正定二次型.
选项
答案
由题设条件知,对任意的χ
1
,χ
2
,…,χ
n
,有 f(χ
1
,χ
2
,…,χ
n
)≥0 其中等号成立当且仅当 [*] 方程组(*)仅有零解的充分必要条件是其系数行列式不为零,即 [*] 所以,当1+(-1)
n+1
a
1
a
2
…a
n
≠0时,对于任意的不全为零的χ
1
,χ
2
,…,χ
n
,有f(χ
1
,χ
2
,…,χ
n
)>0,即当a
1
a
2
…,a
n
≠(-1)
n
时,二次型f为正定二次型.
解析
转载请注明原文地址:https://kaotiyun.com/show/StH4777K
0
考研数学三
相关试题推荐
设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y,与V=X一Y,不相关的充分必要条件为().
如果P(AB)=0,则下列结论中成立的是().
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则().
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,曰均实对称矩阵时,试证(1)的逆命题成立.
设矩阵,则A3的秩为__________.
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_________.
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12一y22一y32,又A*α=α,其中α=(1,1,一1)T.(Ⅰ)求矩阵A;(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
已知三元二次型xTAx的平方项系数均为0,设α=(1,2,一1)T且满足Aα=2α.(I)求该二次型表达式;(Ⅱ)求正交变换x=Qy化二次型为标准形,并写出所用坐标变换.
随机试题
请简要解释“同姓不婚”原则的原因。
患儿,女,1岁。细菌性肺炎入院,目前患儿烦躁不安,呼吸困难。医嘱:吸氧。适宜该患儿的吸氧方式为
在策划大型公共建筑方案时.要充分考虑室外停车位的数量及所占面积。下列小汽车停车指标,哪项是适当的?[2000年第86题]
下列有关工程项目绩效评价的叙述,不正确的是()。
关于静态预算与弹性预算的区别,以下哪一项是正确的?
私募基金管理人委托未取得基金()资格的机构募集私募基金的,中国基金业协会不予办理私募基金备案业务。
下列关于股东权利的表述,正确的是()。Ⅰ.普通股股东有重大决策参与权Ⅱ.普通股股东有公司资产收益权Ⅲ.优先股股东的剩余财产分配权在普通股股东之后Ⅳ.优先股股东没有投票表决权
某货运公司2009年拥有载货汽车25辆、挂车10辆,自重吨位均为20吨;3辆四门六座客货两用车,载货自重吨位为3吨;小轿车2辆。该公司所在省规定载货汽车年纳税额每吨30元,9座以下乘人汽车年纳税额每辆520元。该公司2009年应缴的车船税为()元。
WhydokidshateBrusselssprouts(芽甘蓝)?BecauseBrusselssproutsarebitter,andkidsgenerallydon’tlikebittertastes.Buti
在以下网络协议中,属于数据链路层协议的是______。Ⅰ.TCPⅡ.UDPⅢ.IPⅣ.SMTP
最新回复
(
0
)