首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义; (2)证明可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且 并
(1)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义; (2)证明可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且 并
admin
2019-06-28
93
问题
(1)叙述二元函数z=f(x,y)在点(x
0
,y
0
)处可微及微分
的定义;
(2)证明可微的必要条件定理:设z=f(x,y)在点(x
0
,y
0
)处可微,则f’
x
(x
0
,y
0
)与f’
y
(x
0
,y
0
)都存在,且
并请举例说明(1)之逆不成立.
选项
答案
(1)定义:设z=f(x,y)在点(x
0
,
0
)的某邻域U内有定义,(x
0
+△x
0
,y
0
+△y)∈U. 增量 [*] 其中A,B与△x和△y都无关,[*]则称f(x,y)在点(x
0
,y
0
)处可微,并且[*]为z=f(x,y)在点(x
0
,y
0
)处的微分. (2)设z=f(x,y)在点(x
0
,y
0
)处可微,则(*)式成立.令△y=0,于是 [*] 令△x→0,有[*]同理有[*]于是f’
x
(x
0
,y
0
)与f’
x
(x
0
,y
0
)存在,并且[*] 例如,对于函数[*]有 [*] 两个偏导数均存在.以下用反证法证f(x,y)在点(0,0)处不可微.若可微,则有 △f=f(△x,△y)一f(0,0)=0△x+0△y+o(ρ), [*] 但此式是不成立的.例如取△y=k△x,则 [*] 与k有关,(**)式不成立,所以不可微.
解析
转载请注明原文地址:https://kaotiyun.com/show/SpV4777K
0
考研数学二
相关试题推荐
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明:如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是()
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。求可逆矩阵尸使得P-1AP=A。
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,f(x)/x<0。证明:(Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;(Ⅱ)方程f(x)f"(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根。
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
设y(x)是区间(0,3/2)内的可导函数,且y(1)=0,点P是曲线l:y(x)上的任意一点。l在P处的切线与y轴相交于点(0,Yp),法线与x轴相交于点(Xp,0),若Xp=Yp,求l上点的坐标(x,y)满足的方程。
设直线y=kχ与曲线y=所围平面图形为D1,它们与直线χ=1围成平面图形为D2.(1)求k,使得D1与D2分别绕χ轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;(2)求此时的D1+D2.
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r。的雪堆融化3小时后体积为原来的,求全部融化需要的时间.
[*]x2sinx是奇函数,故在上的定积分值为0.原积分
随机试题
信息
Everysummershe______theneighborsatanoutdoorparty.
下列关于结肠癌的描述,正确的是
胎盘早剥的主要病理变化为
依据《中华人民共和国固体废物污染环境防治法》,产生危险废物的单位,必须按照国家有关规定制定危险废物管理计划,并向所在地()申报危险废物的种类、产生量、流向、贮存、处置等有关资料。
下列记账过程中的错误和遗漏不影响试算平衡的有()。
银行的促销方式主要包括()。
习近平总书记指出,实施乡村振兴战略,必须把确保重要农产品特别是()作为首要任务,把提高农业综合生产能力放在更加突出的位置。
美国国防部安全准则规定的安全级别中,等级最高的是
A、Georgealwaystellsthetruth.B、Georgelivestoofartovisitus.C、ItiskindofGeorgetoassistmeinthefillingstation.
最新回复
(
0
)