首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义; (2)证明可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且 并
(1)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义; (2)证明可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且 并
admin
2019-06-28
55
问题
(1)叙述二元函数z=f(x,y)在点(x
0
,y
0
)处可微及微分
的定义;
(2)证明可微的必要条件定理:设z=f(x,y)在点(x
0
,y
0
)处可微,则f’
x
(x
0
,y
0
)与f’
y
(x
0
,y
0
)都存在,且
并请举例说明(1)之逆不成立.
选项
答案
(1)定义:设z=f(x,y)在点(x
0
,
0
)的某邻域U内有定义,(x
0
+△x
0
,y
0
+△y)∈U. 增量 [*] 其中A,B与△x和△y都无关,[*]则称f(x,y)在点(x
0
,y
0
)处可微,并且[*]为z=f(x,y)在点(x
0
,y
0
)处的微分. (2)设z=f(x,y)在点(x
0
,y
0
)处可微,则(*)式成立.令△y=0,于是 [*] 令△x→0,有[*]同理有[*]于是f’
x
(x
0
,y
0
)与f’
x
(x
0
,y
0
)存在,并且[*] 例如,对于函数[*]有 [*] 两个偏导数均存在.以下用反证法证f(x,y)在点(0,0)处不可微.若可微,则有 △f=f(△x,△y)一f(0,0)=0△x+0△y+o(ρ), [*] 但此式是不成立的.例如取△y=k△x,则 [*] 与k有关,(**)式不成立,所以不可微.
解析
转载请注明原文地址:https://kaotiyun.com/show/SpV4777K
0
考研数学二
相关试题推荐
已知A是n阶可逆矩阵,那么与A有相同特征值的矩阵是()
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。计算PTDP,其中P=。
已知A=,二次型f(x1,x2,x3)=xT(ATA)x的秩为2。求实数a的值;
设向量α1,α2,…,αn-1是n一1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:ξ1,ξ2线性相关;
设α1,α2,…,αn为n个线性无关的n维列向量,β1,β2,…,βn为任意n个n维列向量。证明:α1,α2,…,αn可由β1,β2,…,βn线性表示的充要条件是β1,β2,…,βn线性无关。
微分方程(y2+1)dx=y(y一2x)dy的通解是________.
设向量组α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,10,p)T。p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组。
设D是第一象限由曲线2xy=1,4xy=1与直线y=x,y=x围成的平面区域,函数f(x,y)在D上连续,则f(x,y)dxdy=()
求极限:
随机试题
复制的快捷键组合是()
卢德运动
自然人之间因婚姻、血缘和法律拟制而产生的身份关系是()。
Electricityissuchapartofoureverydaylivesandsomuchtakenforgrantednowadaysthatwerarelythinktwicewhenweswitc
下列描述哪一样不是咀嚼粘膜的特征
用于急性脑水肿脱水降颅压的是()
男,25岁,爱上了比他大30多岁的婶婶,明知不能继续这种性关系,但不能摆脱,而来寻求治疗,对于该患者首选的治疗方法为
建设工程定额可以按照不同的原则和方法对其进行科学的分类。行业定额是按______分类。()
由于现代企业最重要的经营目标就是最大化股东财富,因而()是衡量企业最大化股东财富能力的比率。
自然界中有两种雨,在雨量相同的时候:暴风骤雨或许能在短时间内冲刷去污,但翻开深土却依旧干涸如初;而和风细雨表面上看起来不多,却能无声地滋润深层的土地。对此,请谈谈你的看法。
最新回复
(
0
)