首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得
admin
2018-05-22
76
问题
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=<b=f(b).证明:存在ξ
i
∈(a,b)(i=1,2,…,n),使得
选项
答案
令[*],因为f(x)在[a,b]上连续且单调增加,且f(a)=a<b=f(b), 所以f(a)=a<a+h<…<a+(n-1)h<b=f(b),由端点介值定理和函数单调性,存在a<c
1
<c
2
<…<c
n-1
<b,使得 f(c
1
)=a+h,f(c
2
)=a+2h,…,f(c
n-1
)=a+(n-1)h.再由微分中值定理,得 f(c
1
)-f(a)=f’(ξ
1
)(c
1
-a),ξ
1
∈(a,c
1
),f(c
2
)-f(c
1
)=f’(ξ
2
)(c
2
-c
1
),ξ
2
∈(c
1
,c
2
),…f(b)-f(c
n-1
)=f’(ξ
n
)(b-c
n-1
),ξ
n
∈(c
n-1
,b), 从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Svk4777K
0
考研数学二
相关试题推荐
(2011年试题,三)①证明:对任意的正整数n,都有成立②设an=,证明数列{an}收敛.
(1998年试题,一)
(2007年试题,一)设函数f(x)在(0,+∞)上具有二二阶导数,且fn(x)>0-令un=f(n)=1,2,…,n,则下列结论正确的是().
设(1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(2)对(1)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
证明:(-1<x<1)
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(1)求a的值.(2)将β1,β2,β3用α1,α2,α3线性表示
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0.若极限存在,证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使;(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2-a2)=。
讨论,在点(0,0)处的连续性、可偏导性及可微性.
讨论函数f(x)=的连续性.
随机试题
胎头吸引术牵引时间最长不超过( )。
银汞合金中引起延缓性膨胀的元素是
神经细胞动作电位的幅度接近于()
患儿,女,4岁。发热3天后于头颈部出现淡红色充血性斑丘疹,体温上升至38.8℃,护士可采用哪项护理措施
佟冬17周岁,高中毕业后没有考上大学,待业在家,有心出去闯荡,苦于缺乏资金无法成行。佟冬生母因难产而死,他一直随生父和继母张敏生活,直到去年生父遭车祸去世。目前佟冬和张敏同住。某日,佟冬在张敏的抽屉里发现生父的遗嘱,内容为:生前的所有积蓄留给张敏供日常生活
从某种角度看,佛祖本质上就是一个具备现代意识的知识分子。他开创的佛教完全不像宗教,不仅没有一个全知全能的上帝,也不提倡个人崇拜,不搞繁琐的祭祀仪式。他倡导的轮回说可以理解为世间万物都有联系,互为因果,这在某种程度上是非常正确的。他相信人人平等,反对种族歧视
减刑的对象包括()。
简述法律推理的特征。
给定一个关键字序列(24,19,32,43,38,6,13,22),进行快速排序,扫描一趟后的结果是_____________。
AstheworldexcitedlygreetedSnuppy,thefirstcloned(克隆)dog,commentatorscelebratedourcleverness.Manyfeelproudthatour
最新回复
(
0
)