首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (2)对(1)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设 (1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (2)对(1)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2014-01-26
88
问题
设
(1)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(2)对(1)中的任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
[详解1](1)解方程Aξ
2
=ξ
1
, [*] 由于[*],取x
2
为自由未知量,由x
2
=0得特解为[*]。 取x
2
=1得对应齐次方程组的基础解系为[*]。 故所求ξ
2
=k
2
η+η
*
=k
1
[*],其中k
1
为任意常数. [*] 解得[*] (2)由于|ξ
1
,ξ
2
,ξ
3
|=[*],故ξ
1
,ξ
2
,ξ
3
线性无关. [详解2](1)解方程 Aξ
2
=ξ
1
, [*] 由于[*],取x
3
自由未知量,由x
3
=0得特解为[*], 取x
3
=1得对应齐次方程组的基础解系为[*], 故所求 ξ
2
=k
1
η+η
*
=k
1
[*],其中k
1
为任意常数. 解得[*],其中k
1
,k
2
为任意常数. (2)设存在数k
1
,k
2
,k
3
使得 k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
=0 ① 由题设可得Aξ
1
=0, ①式两端左乘A得 k
2
Aξ
2
+k
3
Aξ
3
=0,即 k
1
ξ
1
+k
3
ξ
3
=0 ② ②式两端左乘A得 k
3
Aξ
3
=0,即 k
3
ξ
3
=0,于是 k
3
=0, 将k
3
=0代入②式得 k
2
ξ
1
=0,故 k
2
=0,将k
2
=K
3
=k
3
=0代入①式得 k
1
=0, 从而ξ
1
,ξ
2
,ξ
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/am34777K
0
考研数学二
相关试题推荐
(06年)设函数f(χ)在χ=0处连续,且=1,则
[2018年]下列函数中,在x=0处不可导的是()
[2007年]设线性方程组(I)与方程(Ⅱ):x1+2x2+x3=a-1.有公共解.求a的值与所有公共解.
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
(16年)设函数f(χ)连续,且满足∫0χf(χ-t)dt=∫0χ(χ-t)f(t)dt+e-χ-1,求f(χ).
(11年)设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量.(Ⅱ)求矩阵A.
[2008年]设n元线性方程组AX=b,其中证明行列式|A|=(n+1)an;
(2007年)设函数y=y(x)由方程ylny—x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αiT表示列向量αi的转置,i=1,2,…,n.
设A=。(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关。
随机试题
从第一代计算机到第四代计算机的体系结构都是相同的。这种体系结构称为________________体系结构。
糖尿病患者服用下列各药前应向医师或药师咨询的是( )。
已知定额基价为1500万元,其他直接费的综合费率为5%,现场经费的综合费率为10%,间接费的综合费率为4%,施工技术装备费的费率为3%,施工技术装备费为多少万元?
在我国投融资体制改革的第一阶段(1979~1984年)推出了()办法。
某工程合同中约定竣工日期为2013年11月8日,实际竣工日期为2014年1月8日,竣工后发包方经承包人催告后依然逾期不支付,承包人最迟应当在()以前向人民法院提起诉讼,行使承包人工程价款的优先受偿权。
下列关于CPT与CFR的叙述,正确的是()。
技术合同主要具有以下()特点。
直链淀粉由葡萄糖经________糖苷键连接而成,纤维素则由葡萄糖经________糖苷键连接而成。
坚持公有制的主体地位是指国有企业在全国企业总数中占绝大多数。()
如果按变址方式读取操作数,则有效地址是指(6)。
最新回复
(
0
)