首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (2)对(1)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设 (1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (2)对(1)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2014-01-26
58
问题
设
(1)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(2)对(1)中的任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
[详解1](1)解方程Aξ
2
=ξ
1
, [*] 由于[*],取x
2
为自由未知量,由x
2
=0得特解为[*]。 取x
2
=1得对应齐次方程组的基础解系为[*]。 故所求ξ
2
=k
2
η+η
*
=k
1
[*],其中k
1
为任意常数. [*] 解得[*] (2)由于|ξ
1
,ξ
2
,ξ
3
|=[*],故ξ
1
,ξ
2
,ξ
3
线性无关. [详解2](1)解方程 Aξ
2
=ξ
1
, [*] 由于[*],取x
3
自由未知量,由x
3
=0得特解为[*], 取x
3
=1得对应齐次方程组的基础解系为[*], 故所求 ξ
2
=k
1
η+η
*
=k
1
[*],其中k
1
为任意常数. 解得[*],其中k
1
,k
2
为任意常数. (2)设存在数k
1
,k
2
,k
3
使得 k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
=0 ① 由题设可得Aξ
1
=0, ①式两端左乘A得 k
2
Aξ
2
+k
3
Aξ
3
=0,即 k
1
ξ
1
+k
3
ξ
3
=0 ② ②式两端左乘A得 k
3
Aξ
3
=0,即 k
3
ξ
3
=0,于是 k
3
=0, 将k
3
=0代入②式得 k
2
ξ
1
=0,故 k
2
=0,将k
2
=K
3
=k
3
=0代入①式得 k
1
=0, 从而ξ
1
,ξ
2
,ξ
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/am34777K
0
考研数学二
相关试题推荐
(91年)曲线y=
[2018年]下列函数中,在x=0处不可导的是()
(11年)已知函数f(u,v)具有二阶连续偏导数,f(1,1)=2是f(u,v)的极值,z=f(χ+y,f(χ,y)).求.
[2007年]设线性方程组(I)与方程(Ⅱ):x1+2x2+x3=a-1.有公共解.求a的值与所有公共解.
(89年)求微分方程y〞+5y′+6y=2e-χ的通解.
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
(96年)设f(χ)在区间[0,1]上可微,且满足条件f(1)=χf(χ)dχ,试证:存在ξ∈(0,1),使f(ξ)+ξf′(ξ)=0.
[2008年]设n元线性方程组AX=b,其中当a为何值时,该方程组有无穷多解,并求通解.
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3).(Ⅰ)证明存在η∈(0,2),使f(η)=f(0);(Ⅱ)证明存在ξ∈(0,3),使f’’(ξ)=0.
[2008年]设n元线性方程组AX=b,其中证明行列式|A|=(n+1)an;
随机试题
“中国人占世界人口总数的22%”中,“中国人”是()
A.拔毒生肌,杀虫止痒B.解毒明目退翳,收湿止痒敛疮C.外用攻毒杀虫,内服逐水通便D.外用清热解毒,内服清肺化痰铅丹的功效是
全关节结核是指
关于滤过的影响因素的不正确表述是
流行病学中的偏倚分为()。
甲遭乙追杀,情急之下夺过丙的摩托车骑上就跑,丙被掉骨折。乙开车继续追杀,甲为逃命飞身跳下疾驶的摩托车奔入树林,丙一万元的摩托车被毁。关于甲行为的说法,下列哪一选项是正确的?(卷二真题试卷第4题)
现行《中华人民共和国海关法》是经()全国人民代表大会修改的。
杠杆投资组合P的标准差是()
邓小平的一生经历了太多的磨难和辉煌,留下了太多的记忆和回想。可人们印象最深的,总是他那求真的(),务实的本色。
下列情形可能发生的是:
最新回复
(
0
)