首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. (1)求a的值. (2)将β1,β2,β3用α1,α2,α3线性表示
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. (1)求a的值. (2)将β1,β2,β3用α1,α2,α3线性表示
admin
2014-01-26
64
问题
设向量组α
1
=(1,0,1)
T
,α
2
=(0,1,1)
T
,α
3
=(1,3,5)
T
不能由向量组β
1
=(1,1,1)
T
,β
2
=(1,2,3)
T
,β
3
=(3,4,a)
T
线性表示.
(1)求a的值.
(2)将β
1
,β
2
,β
3
用α
1
,α
2
,α
3
线性表示.
选项
答案
(1)易知向量组α
1
,α
2
,α
3
线性无关,又向量组α
1
,α
2
,α
3
不能由向量组β
1
,β
2
,β
3
线性表示.故β
1
,β
2
,β
3
线性相关(否则,α
1
,α
2
,α
3
均可由向量组β
1
,β
2
,β
3
线性表示).于是,行列式|β
1
,β
2
,β
3
|=0,即[*] 解之得a=5. (2)对矩阵A=(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)作初等行变换得, [*] 故 β
1
=2α
1
+4α
2
-α
3
,β
2
=α
1
+2α
2
,β
3
=5α
1
+10α
2
—2α
3
.
解析
[分析] 由向量组之间的线性表示定理可知β
1
,β
2
,β
3
一定线性相关,从而可求得a.求一个向量与另一个向量组之间的线性表示实际上就是求非齐次线性方程组的解.
转载请注明原文地址:https://kaotiyun.com/show/Yh34777K
0
考研数学二
相关试题推荐
[*]
[2015年]设矩阵相似于矩阵求可逆矩阵P,使P-1AP为对角矩阵.
[2015年]设矩阵相似于矩阵求a,b的值;
(1987年)设求y’.
(02年)设函数u=f(χ,y,z)有连续偏导数,且z=z(χ,y)由方程χeχ-yey=zez所确定,求du.
设A,B,C均为n阶矩阵.若AB=C,且B可逆,则【】
(95年)已知二次型f(χ1,χ2,χ3)=4χ22-3χ32+4χ1χ2-4χ1χ3+8χ2χ3.(1)写出二次型.厂的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
设矩阵A、B满足关系式AB=A+2B,其中A=,求矩阵B.
(13年)设D是由曲线y=,直线χ=a(a>0)及χ轴所围成的平面图形,Vχ,Uy分别是D绕χ轴,y轴旋转一周所得旋转体的体积.若Vy=10Vχ,求a的值.
设A,B为两个随机事件,且P(A)=,P(B|A)=,P(A|B)=,令求:(Ⅰ)二维随机变量(X,Y)的概率分布;(Ⅱ)X与Y的相关系数ρ(X,Y);(Ⅲ)X=X2+Y2的概率分布.
随机试题
关于LAK细胞,下列说法不对的是
依照《解决国家和他国国民投资争端公约》关于解决投资争端国际中心(ICSID)管辖权的规定,有关将案件提交中心调解或仲裁必须具备的要件是:
目前,一些学校安装的语言实验室系统、多媒体综合教室属于()。
根据《民法通则》规定,公民的人格权不包括()。
现在市面上充斥着《成功的十大要素》之类的书。出版商在推销此类书时声称,这些书将能切实地帮助读者成为卓越的成功者。事实上,几乎每个人都知道,卓越的成功,注定只属于少数人,人们不可能通过书本都成为这少数人群中的一个。基于这一点,出版商故意所作的上述夸张乃至虚假
Doesthelanguagewespeakdeterminehowhealthyandrichwewillbe?NewresearchbyKeithChenofYaleBusinessSchoolsuggest
A公司近期成功中标当地政府机构某信息中心的信息安全系统开发项目。公司任命小李为项目经理,配备了信息安全专家张工,负责项目的质量保证和关键技术。小李为项目制定了整体进度计划,将项目分为需求、设计、实施和上线试运行四个阶段,项目开始后,张工凭借其丰富的
Someabnormalhumanbehaviormaybecausedbyeatingsubstancesthatupsetdelicatechemicalbalancesinthebrain,
Itisimportantforustoknowhowtostaysafewhiletravelinginforeigncountries.We’veallheardthestoriesoftravelersh
Driver’sLicenseTestTipsA)Thisarticlewillprovideyouwithsomesimpletipsforpassingyourdriver’slicensetest.Adequat
最新回复
(
0
)