首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求方程y’’+2my’+n2y=0的通解;又设y=y(x)是满足初始条件y(0)=a,y’(0)=b的特解,求∫0+∞y(x)dx,其中m>n>0,a,b为常数.
求方程y’’+2my’+n2y=0的通解;又设y=y(x)是满足初始条件y(0)=a,y’(0)=b的特解,求∫0+∞y(x)dx,其中m>n>0,a,b为常数.
admin
2018-06-27
62
问题
求方程y’’+2my’+n
2
y=0的通解;又设y=y(x)是满足初始条件y(0)=a,y’(0)=b的特解,求∫
0
+∞
y(x)dx,其中m>n>0,a,b为常数.
选项
答案
特征方程λ
2
+2mλ+n
2
=0,特征根[*],通解为 [*] 注意:指数均为负的 [*] 将方程两边积分[*]y’|
0
+∞
+2my|
0
+∞
+n
2
∫
0
+∞
y(x)dx=0,即 -b-2ma+n
2
∫
0
+∞
y(x)dx=0 [*]∫
0
+∞
y(x)dx=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/T4k4777K
0
考研数学二
相关试题推荐
设A为n阶矩阵,对于齐次线性方程(I)Anx=0和(Ⅱ)An+1x=0,则必有
设曲线L的参数方程为x=φ(t)=t一sint,y=ψ(t)=1一cost(0≤t≤2π)求曲线L与x轴所围图形绕Oy轴旋转一周所成旋转体的体积V;
设曲线L的参数方程为x=φ(t)=t一sint,y=ψ(t)=1一cost(0≤t≤2π)求证:由L的参数方程确定连续函数y=y(x),并求它的定义域;
设函数f(x)在点x=1的某邻域内有定义,且满足3x≤f(x)≤x2+x+1,则曲线y=f(x)在点x=1处的切线方程为________.
设方程y3+sin(xy)一e2x=0确定曲线y=y(x).求此曲线y=y(x)在点(0,1)处的曲率圆方程.
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
设y=y(x)是由方程x2+y=tan(x一y)确定的隐函数,且y(0)=0,则y’’(0)=___________.
设可导函数x=x(t)由方程所确定,其中可导函数f(u)>0,且f(0)=f’(0)=1,则x’’(0)=
设A是m×n矩阵,且方程组Ax=b有解,则
随机试题
如果一个湖泊受到了污染,鱼类的数量就会因为死亡而减少,鱼体死亡腐烂后又会进一步加重污染,并引起更多鱼类的死亡,这种反馈是()。
神经一骨骼肌接头处的兴奋传递物质是
()的有效结合能使代理人不断修正自己的行为,使其行为与委托人的利益目标相一致。
某电解铝厂位于甲市郊区,已经生产十年,现有工程规模为7万t/a电解铝,主要设备为60kA自焙阳极电解槽160台,产量20000t/a;120kA预焙阳极电解槽120台,产量50000t/a。自焙阳极电解槽含氟烟气采用干法净化回收装置,但由于其设计存在一些问
普通硅酸盐水泥的特点有()。
不适用旅行社质量保证金赔偿的情形有()。
定义:①接近权:指大众即社会的每一个成员都有接近、利用媒介发表意见、观点的自由权利,实际上是通过新闻媒介而实现的表达权。②更正权:指当与己有关的报道出现错误时,当事者拥有要求同一传媒予以更正或登载反驳文章的权利。③知晓权:指公
周作人怀着探求日本风土人情与语言文字趣味的双重热情,从日本民间俗文学入手,进而研究文人的雅文学,_______地深入到日本文化中去。他由此达到的,是对日本文化的相当深入、也相当深刻的把握。这几乎是同时代的许多中国留日知识分子_______的。填入
下列关于模板的表述中,错误的是
Ilovemylittlegirlnolessthananymother,yetwedon’tlivetogether.Iaminprison(监狱).Ican’ttakehertoschool,ort
最新回复
(
0
)