首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设实矩阵A=(aij),Aij是aij的代数余子式,∣aij∣,∣Aij∣分别表示两个表达式的绝对值,则下列结论不正确的是( )
设实矩阵A=(aij),Aij是aij的代数余子式,∣aij∣,∣Aij∣分别表示两个表达式的绝对值,则下列结论不正确的是( )
admin
2021-04-07
118
问题
设实矩阵A=(a
ij
),A
ij
是a
ij
的代数余子式,∣a
ij
∣,∣A
ij
∣分别表示两个表达式的绝对值,则下列结论不正确的是( )
选项
A、若∣A∣=1且对任意i,j均有a
ij
=-A
ij
,则A为正交矩阵
B、若∣A∣=-1且对任意i,j均有口a
ij
=-A
ij
,则A为正交矩阵
C、若A为正交矩阵且∣A∣=1,则对任意i,j,有∣a
ij
∣=∣A
ij
∣
D、若A为正交矩阵且∣A∣=-1,则对任意i,j,有∣a
ij
∣=∣A
ij
∣
答案
A
解析
对于A,B,若∣A∣=1且对任意i,j,均有a
ij
=-A
ij
,则A
T
A=-A
*
A=-∣A∣E=-E,故A不是正交矩阵;若∣A∣=-1且对任意i,j,均有a
ij
=-A
ij
,则A
T
A=-A
*
A=-∣A∣E=E,故A是正交矩阵;
对于C,D,若A是正交矩阵,则∣A∣=±1,若∣A∣=1,则由A
*
A=∣A∣E=E=A
T
A,有A
*
=A
T
,故对任意i,j,有a
ij
=A
ij
,显然∣a
ij
∣=∣A
ij
∣;若∣A∣=-1,则由A
*
A=∣A∣E=-E=-A
T
A,有A
*
=-A
T
,故对任意i,j,有a
ij
=-A
ij
,也会有∣a
ij
∣=∣A
ij
∣,选A。
转载请注明原文地址:https://kaotiyun.com/show/TEy4777K
0
考研数学二
相关试题推荐
=___________.
已知矩阵有两个线性无关的特征向量,则a=__________.
设函数y=y(x)由方程y=1一xey确定,则=__________。
二次型f(x1,x2,x3)=(a1x1+a2x2+a3x3)2的矩阵是________.
函数F(x)=(x>0)的递减区间为_______.
(1)设A是n阶方阵,满足A2=A,证明A相似于对角阵;(2)设,求可逆阵P使得P-1AP=Λ,其中Λ是对角阵.
曲线y=lnx与x轴及直线x=e所围成的图形的面积是()
已知函数f(x)二阶可导,曲线y=f”(x)的图形如图2—3所示,则曲线y=f(x)()
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式若f(1)=0,fˊ(1)=1,求函数f(u)的表达式.
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则r(A)=r(B);④若r(
随机试题
弥漫性毛细血管内增生性肾小球肾炎患者水肿的主要原因是
症状性癫痫的定义是
对指甲下脓肿应采取的最佳措施是
治疗腰痛的主穴是
国际法院是联合国主要司法机关,在和平解决国际争端的工作中,起到日益重要的作用。《国际法院规约》和《联合国宪章》是国际法院行使管辖权的依据。下列关于国际法院诉讼管辖权的说法,正确的是:
(2007年)设β1、β2是线性方程组Ax=b的两个不同的解,α1、α2是导出组Ax=0的基础解系,k1、k2是任意常数,则Ax=b的通解是()。
Whenateacherasksstudentstodiscusshowthewriter’sideasareorganizedinthetext,he/sheintendstodevelopstudents’
根据我国《宪法》的规定,有权解释宪法的机关是()。
Allinternationalchainschoolsteachmanydifferentlanguages.
Humble______itmaybe,there’snoplacelikehome,______hemaygo.
最新回复
(
0
)