首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A是n阶方阵,满足A2=A,证明A相似于对角阵; (2)设,求可逆阵P使得P-1AP=Λ,其中Λ是对角阵.
(1)设A是n阶方阵,满足A2=A,证明A相似于对角阵; (2)设,求可逆阵P使得P-1AP=Λ,其中Λ是对角阵.
admin
2019-08-11
98
问题
(1)设A是n阶方阵,满足A
2
=A,证明A相似于对角阵;
(2)设
,求可逆阵P使得P
-1
AP=Λ,其中Λ是对角阵.
选项
答案
(1)由题设A
2
=A,故A
2
-A=A(A-E)=(A-E)A=O,故 r(A)+r(A-E)≤n. 又 r(A)+r(A-E)=r(A)+r(E-A)≥r(A+E-A)=r(E)=n, 故r(A)+r(A-E)=n. 设r(A)=r,r(A-E)=n-r. 因(A-E)A=O,r(A)=r,A中r个线性无关列向量是A的对应于特征值λ=1的特征向量,设为ξ
1
,ξ
2
,…,ξ
r
. 又A(A-E)=O,r(A-E)=n-r,A-E中n-r个线性无关列向量是A的对应于特征值λ=0的特征向量,记为η
1
,η
2
,η
3
,…,η
n-r
,不同特征值对应的特征向量线性无关. 故取P= (ξ
1
,ξ
2
,…,ξ
r
,η
1
,η
2
,…,η
n-r
),P可逆,且 [*] (2)[*] 满足上一题的条件,由上知 r(A)=1,A的线性无关列向量[*]是A的对应于特征值λ=1的特征向量. r(A-E)=2,[*]的线性无关列向量[*]是A的对应于特征值λ=0的特征向量. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/n8N4777K
0
考研数学二
相关试题推荐
微分方程xy’+y=0满足初始条件y(1)=2的特解为_______.
方程组有非零解,则k=_________.
设方程组有通解k1ξ1+k2ξ2=k1(1,2,1,-1)T+k2(0,-1,-3,2)T.方程组有通解λ1η1+λ2η2=λ1(2,-1,-6,1)T+λ2(-1,2,4,a+8)T.已知方程组有非零解,试确定参数α的值,并求该非零
(1)设圆盘的半径为R,厚为h.点密度为该点到与圆盘垂直的圆盘中心轴的距离的平方,求该圆盘的质量m;(2)将以曲线,x=1,x=4及x轴围成的曲边梯形绕x轴旋转一周生成的旋转体记为V,设V的点密度为该点到旋转轴的距离的平方,求该物体的质量M.
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ+η=k(1,2,-3)T+(2,-1,1)T,其中k是任意常数.证明:方程组(α1,α2)x=β有唯一解,并求该解;
(05年)设函数f(x)连续,且f(0)≠0,求极限
(02年)设y=y(x)是二阶常系数微分方程y"+py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时.函数的极限.
(08年)求极限
(01)已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα1,β4=α1+tα1.讨论实数t满足什么关系时,β1,β2,β3,β4也是AX=0的一个基础解系.
随机试题
下列哪些选项应按非法拘禁罪定罪论处?()
成就需要理论
男,62岁。高血压病史多年,晨练时突发头痛、呕吐、右侧偏瘫,体检:深昏迷,左侧瞳孔大,光反射消失,诊断为
小儿感冒容易产生兼症是因为( )。
以持久性的心境低落为特征的神经症称为()。
下列收入应计入我国GDP的有()。
把下列句子组合成语意连贯的一段话:①但是这正是无上的美的境界,绝好的自然诗篇。②这总比淡漠无味胜过百倍,我们以为最难堪而又极欲逃避的惟有淡漠无味。③虽然这些虫声会引起劳人的感叹,秋士的伤怀,独客的微喟,思妇的低泣。④
坚持和完善社会主义初级阶段基本经济制度,要积极发展混合所有制经济。混合所有制经济是()
下面不属于软件设计阶段任务的是
ThingstobeTaughtinEverySchoolI.Introduction:Importanceofstudents’abilitytodealwiththerealworld.A.Speaker’so
最新回复
(
0
)