首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A是n阶方阵,满足A2=A,证明A相似于对角阵; (2)设,求可逆阵P使得P-1AP=Λ,其中Λ是对角阵.
(1)设A是n阶方阵,满足A2=A,证明A相似于对角阵; (2)设,求可逆阵P使得P-1AP=Λ,其中Λ是对角阵.
admin
2019-08-11
85
问题
(1)设A是n阶方阵,满足A
2
=A,证明A相似于对角阵;
(2)设
,求可逆阵P使得P
-1
AP=Λ,其中Λ是对角阵.
选项
答案
(1)由题设A
2
=A,故A
2
-A=A(A-E)=(A-E)A=O,故 r(A)+r(A-E)≤n. 又 r(A)+r(A-E)=r(A)+r(E-A)≥r(A+E-A)=r(E)=n, 故r(A)+r(A-E)=n. 设r(A)=r,r(A-E)=n-r. 因(A-E)A=O,r(A)=r,A中r个线性无关列向量是A的对应于特征值λ=1的特征向量,设为ξ
1
,ξ
2
,…,ξ
r
. 又A(A-E)=O,r(A-E)=n-r,A-E中n-r个线性无关列向量是A的对应于特征值λ=0的特征向量,记为η
1
,η
2
,η
3
,…,η
n-r
,不同特征值对应的特征向量线性无关. 故取P= (ξ
1
,ξ
2
,…,ξ
r
,η
1
,η
2
,…,η
n-r
),P可逆,且 [*] (2)[*] 满足上一题的条件,由上知 r(A)=1,A的线性无关列向量[*]是A的对应于特征值λ=1的特征向量. r(A-E)=2,[*]的线性无关列向量[*]是A的对应于特征值λ=0的特征向量. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/n8N4777K
0
考研数学二
相关试题推荐
设y=y(χ)满足△y=y△χ+0(△χ)且y(0)=1,则y(χ)=_______.
设常数a>0.由方程组确定的满足y(a)=a,z(a)=a的函数组为y=y(x),z=z(x),则yˊ(a)=______,zˊ(a)=______.
设,问a,b,c为何值时,向量组α1,α2,α3与β1,β2,β3是等价向量组?向量组等价时,求α1由β1,β2,β3线性表出的表出式及β1由α1,α2,α3线性表出的表出式.
设齐次线性方程组Ax=O为在方程组(*)的基础上增添一个方程2x1+ax2-4x3+bx4=0,得齐次线性方程组Bx=0为[img][/img]求方程组(*)的基础解系和通解;
求由方程2x2+2y2+z2+8xz-z+8=0所确定的函数z(x,y)的极值.
设,X是2阶矩阵.问AX-XA=E是否有解?其中E是2阶单位矩阵,说明理由.
设当x∈[-1,1]时,f(x)连续,F(x)=∫-11|x-t|f(t)dt,x∈[-1,1].若f(x)为偶函数,证明F(x)也是偶函数;
(00年)已知f(x)是周期为5的连续函数.它在x=0某个邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+α(x)其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线
求极限
设f(x,y)是定义在区域0≤x≤1,0≤y≤1上的二元连续函数,f(0,0)=一1,求极限
随机试题
攒蹙累积,莫得遁隐。
AIftheexperimentsucceedsorfails,itwillBprovideuswithvaluableCexperience,whichisessentialtoDimprovingourfuture
根据《房地产广告发布暂行规定》,禁止发布房地产销售广告的情形有()等。
纳税人的下列支出中,在计算企业所得税应纳税所得额时准予扣除的是()。
甲公司在实施风险管理过程中,对由人为操作和自然因素引起的各种风险对企业影响的大小和发生的可能性进行分析,为确定企业风险的优先次序提供分析框架。该公司采取的上述风险管理方法属于()。
下列对利率变动的影响最为直接与明显的经济政策是()。
教师要充分利用现代教育技术,拓宽学生学习和运用英语的渠道。
区分事物发展过程中量变和质变的根本标志是()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
To;Roberts.hifi.co.ukFrom;Dave@electricalsupplies.comWearesorrythatourcomputerorderingsystembroke【16】______la
最新回复
(
0
)