首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A是n阶方阵,满足A2=A,证明A相似于对角阵; (2)设,求可逆阵P使得P-1AP=Λ,其中Λ是对角阵.
(1)设A是n阶方阵,满足A2=A,证明A相似于对角阵; (2)设,求可逆阵P使得P-1AP=Λ,其中Λ是对角阵.
admin
2019-08-11
62
问题
(1)设A是n阶方阵,满足A
2
=A,证明A相似于对角阵;
(2)设
,求可逆阵P使得P
-1
AP=Λ,其中Λ是对角阵.
选项
答案
(1)由题设A
2
=A,故A
2
-A=A(A-E)=(A-E)A=O,故 r(A)+r(A-E)≤n. 又 r(A)+r(A-E)=r(A)+r(E-A)≥r(A+E-A)=r(E)=n, 故r(A)+r(A-E)=n. 设r(A)=r,r(A-E)=n-r. 因(A-E)A=O,r(A)=r,A中r个线性无关列向量是A的对应于特征值λ=1的特征向量,设为ξ
1
,ξ
2
,…,ξ
r
. 又A(A-E)=O,r(A-E)=n-r,A-E中n-r个线性无关列向量是A的对应于特征值λ=0的特征向量,记为η
1
,η
2
,η
3
,…,η
n-r
,不同特征值对应的特征向量线性无关. 故取P= (ξ
1
,ξ
2
,…,ξ
r
,η
1
,η
2
,…,η
n-r
),P可逆,且 [*] (2)[*] 满足上一题的条件,由上知 r(A)=1,A的线性无关列向量[*]是A的对应于特征值λ=1的特征向量. r(A-E)=2,[*]的线性无关列向量[*]是A的对应于特征值λ=0的特征向量. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/n8N4777K
0
考研数学二
相关试题推荐
由曲线y=和直线y=x及y=4x在第一象限中围成的平面图形的面积为_________。
对数螺线,ρ=eθ在点(ρ,θ)=处的切线的直角坐标方程为_______.
设行列式D=,则第四行元素余子式之和的值为_________。
设λ1,λ2是n阶实对称矩阵A的两个不同特征值,α1是属于λ1的单位特征向量,则矩阵A—λ1α1α11必有两个特征值是_______.
存在且不为零的充要条件是常数p=______,此时该极限值为______.
设齐次线性方程组Ax=O为在方程组(*)的基础上增添一个方程2x1+ax2-4x3+bx4=0,得齐次线性方程组Bx=0为[img][/img]问a,b满足什么条件时,方程组(*)和(**)是同解方程组.
设3维向量组α1,α2线性无关,β1,β2线性无关.若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求既可由α1,α2线性表出,也可由β1,β2线性表出的所有非零向
(92年)求微分方程y"一3y’+2y=xex的通解.
(10)没A=已知线性方程组Ax=b存在2个不同的解.(Ⅰ)求λ,a;(Ⅱ)求方程组Ax=b的通解.
(05)已知3阶矩阵A的第一行是(a,b,c),a,b.c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解.
随机试题
背景资料: 承包人承担某堤防工程,工程项目的内容为堤段Ⅰ(土石结构)和堤段Ⅱ(混凝土结构),合同双方签订了合同:签约合同价为600万元,合同工期为120d。 合同约定: (1)工程预付款为签约合同的10%;当工程进度款累计达到签约合同价的60%时,从
简述项目管理的过程。
“社会知觉”的概念,最初的提出者是美国心理学家()。
易诱发急性胰腺炎的是()
A.口气臭秽B.口气酸臭C.口气酒臭D.口气腐臭E.口中散发烂苹果气味胃有宿食,可闻到
(2006年)下列哪种平面流动的等势线为一组平行的直线?()
下列内容中,属于单位工程进度计划应包括的有()。
银行业从业人员的下列行为中正确的是()。
为保持银行的清偿能力和流动性,商业银行贷款的期限结构必须与下列哪一项的期限结构匹配?()
设f(x)在区间(0,+∞)上连续,且严格单调增加.试求证:F(x)=在区间(0,+∞)上也严格单调增加.
最新回复
(
0
)