首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下3个命题: ①若数列{un}收敛于A,则其任意子数列必定收敛于A; ②若单调数列{xn}的某一子数列收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A. 正确的个数为 ( )
以下3个命题: ①若数列{un}收敛于A,则其任意子数列必定收敛于A; ②若单调数列{xn}的某一子数列收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A. 正确的个数为 ( )
admin
2019-01-06
120
问题
以下3个命题:
①若数列{u
n
}收敛于A,则其任意子数列
必定收敛于A;
②若单调数列{x
n
}的某一子数列
收敛于A,则该数列必定收敛于A;
③若数列{x
2n
}与{x
2n+1
}都收敛于A,则数列{x
n
}必定收敛于A.
正确的个数为 ( )
选项
A、0
B、1
C、2
D、3
答案
D
解析
对于命题①,由数列收敛的定义可知,若数列{u
n
}收敛于A,则对任意给定的ε>0,存在自然数N,当n>N时,恒有
|u
n
一A|<ε,
则当n
i
>N时,恒有
|u
ni
一A|<ε,
因此数列{u
ni
}也收敛于A,可知命题正确.
对于命题②,不妨设数列{x
n
}单调增加,即
x
1
≤x
2
≤…≤x
n
≤…,
其中某一给定子数列
收敛于A,则对任意给定的ε>0,存在自然数N,当n
i
>N时,恒有
|
一A|<ε.
由于数列{x
n
}为单调增加的数列,对于任意的n>N*(其中N*为子列
下标大于N的最小值),必定存在n
i
≤n≤n
i+1
,有
一ε<
≤x
n
一A≤
<ε,
从而 |x
n
一A|<ε.
可知数列{x
n
}收敛于A同理可证,当数列{x
n
}单调减少时,结论仍成立.因此命题正确.
对于命题③,因
由极限的定义可知,对于任意给定的ε>0,必定存在自然数N
1
,N
2
:
当2n>N
1
时,恒有
|x
2n
一A|<ε;
当2n+1>N
2
时,恒有
|x
2n+1
一A|<ε.
取N=max{N
1
,N
2
},则当n>N时,总有
|x
n
一A|<ε,
因此
=A.可知命题正确.
故答案选择(D).
转载请注明原文地址:https://kaotiyun.com/show/TKW4777K
0
考研数学三
相关试题推荐
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A.
设事件A发生的概率是事件B发生概率的3倍,A与B都不发生的概率是A与B同时发生概率的2倍,若,则P(A一B)=____________.
设随机变量X和Y独立,并且都服从正态分布N(μ,σ2),求随机变量z=min(X,Y)的数学期望.
设随机变量X服从(0,1)上的均匀分布,求下列Yi(i=1,2,3,4)的数学期望和方差:(I)Y1=ex;(Ⅱ)Y2=一2lnx;(Ⅲ)(Ⅳ)Y4=X2.
在函数中当x→0时极限不存在的是
(93年)设4阶方阵A的秩为2,则其伴随矩阵A*的秩为_______.
设f(χ)有一阶连续导数,f(0)=0,当χ→0时,∫0f(χ)f(t)dt与χ2为等价无穷小,则f′(0)等于【】
设二次型f(χ1,χ2,χ3)=χ12+χ22+aχ32+2bχ1χ2-2χ1χ3+2χ2χ3(b<0)通过正交变换化成了标准形f=6y12+3y22-2y12.求a、b的值及所用正交变换的矩阵P.
设当x→0时,(x一sinx)ln(l+x)是比一1高阶的无穷小,一1是比∫0x(1一cos2t)dt高阶的无穷小,则n为().
随机试题
案例(纯属虚构):出口商甲与进口商乙订立买卖合同并提供样品,由乙开出以甲为抬头的信用证,又由甲与制造商丙订立与买卖契约内容完全相同的合同,厂商丙订货后自行包装交货,而甲因与乙、丙的合同内注明:“以制造厂检验为准”,同时甲与丙的合同内也订明如规格品
血培养细菌阳性的是
以下关于双代号网络图的说法中,正确的是()。
根据下面材料回答问题。2011年2~12月间,上交所和深交所上市公司市价总值均环比下降的月份有几个?()
[2014年·吉林·单选]做好班主任工作的前提和基础是()。
工欲善其事,必先利其器。通过工匠打磨利器,追求完美,打造精品,你从中得到什么启示?
左边给定的是纸盒的外表面,下列哪一项能由它折叠而成?
下列情形可能发生的是()。
在数据表视图下,不能进行的操作是
Noneoftheattemptstospecifythecausesofcrimeexplainswhymostofthepeopleexposedtotheallegedcausesdonotcommit
最新回复
(
0
)