首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知矩阵A= (1)求A99. (2)设3阶矩阵B=(α1,α2,α3)满足B2=BA,记B=(β1,β2,β3)将β1,β2,β3分别表示为α1,α2,α3的线性组合.
已知矩阵A= (1)求A99. (2)设3阶矩阵B=(α1,α2,α3)满足B2=BA,记B=(β1,β2,β3)将β1,β2,β3分别表示为α1,α2,α3的线性组合.
admin
2020-09-25
85
问题
已知矩阵A=
(1)求A
99
.
(2)设3阶矩阵B=(α
1
,α
2
,α
3
)满足B
2
=BA,记B=(β
1
,β
2
,β
3
)将β
1
,β
2
,β
3
分别表示为α
1
,α
2
,α
3
的线性组合.
选项
答案
(1)利用相似对角化求解. 由|λE一A|=0,可得A的特征值为λ
1
=0,λ
2
=-1,λ
3
=一2,故A~∧=[*] ①当λ
1
=0时,由(0E—A)x=0,解出此时A的属于特征值λ
1
=0的特征向量为γ
1
=[*] ②当λ
2
=一1时,由(-E一A)x=0,解出此时A的属于特征值λ
2
=一1的特征向量为γ
2
=[*] ③当λ
3
=一2时,由(-2E—A)x=0,解出此时A的属于特征值λ
3
=一2的特征向量为γ
3
=[*] 令P=(γ
1
,γ
2
,γ
3
)=[*],由P
-1
AP=A=[*]可得A=PAP
-1
,A
99
=PA
99
P
-1
. [*] (2)B
2
=BA[*]B
3
=BBA=B
2
A=BAA=BA
2
[*]B
100
=BA
99
,由于B=(α
1
,α
2
,α
3
),B
100
=(β
1
,β
2
,β
3
)故 (β
1
,β
2
,β
3
)=(α
1
,α
2
,α
3
)A
99
[*] 因此,β
1
=(一2+2
99
)α
1
+(一2+2
100
)α
2
,β
2
=(1—2
99
)α
1
+(1—2
100
)α
2
,β
3
=(2—2
98
)α
1
+(2—2
99
)α
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/TPx4777K
0
考研数学三
相关试题推荐
设α=(1,-1,a)T是A=的伴随矩阵A*的特征向量,其中r(A*)=3,则a=__________
设某种商品的合格率为90%,某单位要想给100名职工每人一件这种商品.试求:该单位至少购买多少件这种商品才能以97.5%的概率保证每人都可以得到一件合格品?
已知,A*是A的伴随矩阵,那么A*的特征值是________。
已知方程组与方程(2)x1+5x3=0,则(1)与(2)的公共解是________。
已知方程组有无穷多解,那么a=_______
已知矩阵A=只有一个线性无关的特征向量,那么A的三个特征值是________。
已知矩阵,若线性方程组Ax=b有无穷多解,则a=________.
设A是三阶实对称矩阵,E三阶单位矩阵,若A2+A=2E,且|A|=4,则二次型xTAx的规范形为()
已知X=AX+B,其中求矩阵X.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
随机试题
马克思主义经典作家认为,实现人的全面发展的基本途径是()。
人身自由是人们一切行动和生活的前提条件。人身自由是指()
冷哮咳痰特点
根据《建设工程施工专业分包合同(示范文本)》(GF--2003--0213),分包人的工作包括()。
有一宗土地,出让年期为40年,资本化率为10%,预计未来5年的纯收益分别为20万元、22万元、24万元、21万元和25万元,并从6年开始稳定保持在30万元的水平上,那么该宗土地的收益价格接近于()万元。
采购品种分析工作包括()。
请简述完美市场条件下的MM定理Ⅰ和定理Ⅱ。[对外经济贸易大学2012研;西南财经大学2016研]
推动社会主义协商民主广泛多层制度化发展,发挥社会主义协商民主的重要作用。社会主义协商民主制度建设的意义体现在()
WirmoechteninSpanieneinenUrlaubmachen.WirfahrenentwedermitdemAuto______wirfliegen.
Therewere1,300schoolswhodidnotsendasinglestudenttoOxbridge(牛津剑桥)between2006—2009.Let’sassumethattherewereat
最新回复
(
0
)