首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求一个以y1=tet,y2=sin 2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
求一个以y1=tet,y2=sin 2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
admin
2018-09-20
90
问题
求一个以y
1
=te
t
,y
2
=sin 2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
选项
答案
由y
1
=te
t
可知y
3
=e
t
亦为其解,由y
2
=sin 2t可得y
4
=cos 2t也是其解,故所求方程对应的特征方程的根r
1
=r
3
=1,r
2
=2i,r
4
=一2i.其特征方程为 (r—1)
2
(r
2
+4)=0,即r
4
—2r
3
+5r
2
一8r+4=0, 故所求微分方程为y
(4)
一2y"’+-5y"一8y’+4y=0,其通解为 y=(C
1
+C
2
t)e
t
+C
3
cos 2t+C
4
sin 2t,其中C
1
,C
2
,C
3
,C
4
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/TxW4777K
0
考研数学三
相关试题推荐
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
设A,B为满足AB=0的任意两个非零矩阵,则必有
设f(x)=(I)求f’(x);(Ⅱ)证明:x=0是f(x)的极大值点;(Ⅲ)令,考察f’(xn)是正的还是负的,n为非零整数;(Ⅳ)证明:对,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f’’(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
在长为L的线段上任取两点,求两点之间距离的数学期望及方差.
设(X,Y)在区域D:0<x<1,|y|≤x内服从均匀分布.求随机变量X的边缘密度函数;
设二维随机变量(X,Y)在区域D:x2+y2≤9a2(a>0)上服从均匀分布,p=P(X2+9Y2≤9a2),则().
设函数f(x)满足xf’(x)一2f(x)=一x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积.
微分方程y’’一3y’+2y=2ex满足的特解为_________.
随机试题
简述调查人员的三项基本职责。
Themanagerclaimedthathiscompanyhadthe()rightofpublication.
川乌的剧毒成分是
A.抗感染B.剖胸探查C.同定胸壁D.穿刺排气减压E.迅速封闭胸壁伤口开放性气胸的紧急处理应
砌筑拱和拱顶时,必须()。
按照《公路工程国内招标文件范本》的相关规定,投标人的投标文件必须包括()
某二级耐火等级的办公室,建筑高度为24m,其周边布置有多个二级耐火等级的建筑,下列关于该办公建筑与周边建筑物防火间距的做法中,正确的有()。
下列各项中,关于明显微小错报的说法中,不恰当的是()。
2005年5月3日,受中共中央和国务院的委托,中共中央台湾工作办公室、国务院台湾事务办公室主任陈云林宣布,大陆同胞向台湾同胞赠送一对象征和平团结友爱的大熊猫;同时宣布,大陆有关方面将于近期开放大陆居民赴台湾(),扩大开放台湾()准入并对其中
Ifyouwanttoimproveyourchild’sresultsatschool,【T1】______thattheydoplentyofexercise.Scientistshavealreadyshownt
最新回复
(
0
)