设a1=4,an+1=,证明:存在,并求此极限.

admin2022-10-27  0

问题 设a1=4,an+1=,证明:存在,并求此极限.

选项

答案先证明an≥2, a1=4≥2, 设ak≥2, 则ak+1=[*]=2, 由数学归纳法,对任意的自然数n有an≥2; 由an+1-an=[*]得 数列{an}单调递减,即数列{an}单调递减有下界,故极限[*]存在. 令[*],解得A=-1(舍去),A=2.

解析
转载请注明原文地址:https://kaotiyun.com/show/U2e4777K
0

随机试题
最新回复(0)