首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组有3个线性无关的解. (1)证明此方程组的系数矩阵A的秩为2. (2)求a,b的值和方程组的通解.
已知非齐次线性方程组有3个线性无关的解. (1)证明此方程组的系数矩阵A的秩为2. (2)求a,b的值和方程组的通解.
admin
2018-11-23
79
问题
已知非齐次线性方程组
有3个线性无关的解.
(1)证明此方程组的系数矩阵A的秩为2.
(2)求a,b的值和方程组的通解.
选项
答案
(1)设α
1
,α
2
,α
3
是AX=β的3个线性无关的解,则,α
2
-α
1
,α
3
-α
1
是AX=0的2个线性无关的解.于是AX=0的解集合的秩不小于2,即4-r(A)≥2,r(A)≤2, 又因为A的行向量是两两线性无关的,所以r(A)≥2. 两个不等式说明了r(A)=2. [*] 由r(A)=2,得出a=2,b=-3. 代入后继续作初等行变换化为简单阶梯形矩阵: [*] 得同解方程组 [*] 求出一个特解(2,-3,0,0)T和AX=0的基础解系(-2,1,1,0)
T
,(4,-5,0,1)
T
.得到方程组的通解: (2,-3,0,0)
T
+c
1
(-2,1,1,0)
T
+c
2
(4,-5,0,1)
T
,c
1
,c
2
,任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/U9M4777K
0
考研数学一
相关试题推荐
设矩阵A=有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵.
设二维随机变量(X,Y)的概率密度为求:(Ⅰ)(X,Y)的边缘概率密度fX(x)fY(y);(Ⅱ)z=2X一Y的概率密度fZ(z).
设n阶(n≥3)矩阵A的主对角元均为1,其余元素均为a,且方程组AX=0只有一个非零解组成基础解系,则a=_________.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
已知向量组与向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a、b的值.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22一2x32+2bx1x3(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为一12.(1)求a、b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
设齐次线性方程组Am×nx=0的解全是方程b1x1+b2x2+-…+bnxn=0的解,其中x=(x1,x2,…,xn)T.证明:向量b=(b1,b2,…,bn)可由A的行向量组线性表出.
设二维随机变量(X,Y)的概率密度为问X与Y是否独立?|X|与|Y|是否独立?
(05年)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(I)存在ξ∈(0,1),使得f(ξ)=1一ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
(88年)在区间(0,1)中随机地取两个数,则事件“两数之和小于”的概率为_______.
随机试题
某出版社的编辑小刘手中有一篇有关财务软件应用的书稿“会计电算化节节高升.docx”,打开该文档,按下列要求帮助小刘对书稿进行排版操作并按原文件名进行保存:在书稿中用红色标出的文字的适当位置,为前两个表格和前三个图片设置自动引用其题注号。为第2张表格“表
下列软件中,不是操作系统的是_____。
胃痛之胃阴亏耗证,治宜选方
患者,男,48岁。支气管肺癌。病理组织报告为“鳞状细胞癌”,应考虑
麦角新碱不用于催产和引产是因为
根据《建设工程施工合同(示范文本)》(GF-99-0201),若合同中约定有工程预付款,则预付时间应()。
数字音频地面广播是将传送的模拟声音信号经过()调制,转换成二进制数字信号进行传送的。
一个学生用汉语拼音给英语单词注音,发音始终不准确,这是学习的________。
経済発展()公害問題も厳しくなってきました。
A、Trytohelphimtobookanotherroominherhotel.B、Checkhisinformationtoseeifhehasbookedaroom.C、Showhimtheway
最新回复
(
0
)