首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1=xex+e2x,y2=xex一e-x,y3=xex+e2x+e-x为某二阶线性常系数非齐次微分方程的特解,求此微分方程。
已知y1=xex+e2x,y2=xex一e-x,y3=xex+e2x+e-x为某二阶线性常系数非齐次微分方程的特解,求此微分方程。
admin
2018-05-25
51
问题
已知y
1
=xe
x
+e
2x
,y
2
=xe
x
一e
-x
,y
3
=xe
x
+e
2x
+e
-x
为某二阶线性常系数非齐次微分方程的特解,求此微分方程。
选项
答案
因y
1
,y
3
线性无关,则y
3
一y
1
=e
-x
为对应齐次方程的解,那么y
2
+e
-x
=xe
x
为非齐次解, 而y
0
—xe
x
=e
2x
为齐次解。 则齐次方程的特征方程为(λ+1)(λ一2)=0,即λ
2
一λ一2=0。故齐次方程为y"一y一2y=0。 设所求的二阶线性非齐次方程为y"一y’一2y=f(x)。 将y=xe
x
,y’=e
x
+xe
x
及y"=2e
x
+xe
x
代入该方程得f(x)=e
x
(1—2x)。 故所求方程为y"一y’一2y=e
x
(1—2x)。
解析
转载请注明原文地址:https://kaotiyun.com/show/UQg4777K
0
考研数学一
相关试题推荐
确定a,b,使得当x→0时,a—cosbx+sin3x与x3为等价无穷小.
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问:(1)α1能否由α2,α3线性表出?证明你的结论.(2)α4能否由α1,α2,α3线性表出?证明你的结论.
设n维列向量组α1,…,αm(m<n)线性无关,则n维列向量组β1,…,βm线性无关的充分必要条件为()
设z=z(z,y)具有二阶连续偏导数,试确定常数a与b,使得经变换u=x+ay,υ=x+by,可将z关于x、y的方程 化为z关于u、υ的方程并求出其解z=z(z+ay,x+by).
求微分方程满足初始条件y(0)=1,y’(0)=1的特解.
设随机变量X,Y相互独立,且P{X=0)=P{X=1)=P{Y≤x)=x,0<x≤1.求Z=XY的分布函数.
某单位员工中有90%的人是基民(购买基金),80%的人是炒股的股民,已知在是股民的前提条件下,还是基民的人所占的比例至少是________.
(Ⅰ)设0<x<+∞,证明存在η,0<η<1,使(Ⅱ)求出(Ⅰ)中η关于x的函数具体表达式η=η(x),并求出当0<x<+∞时函数η(x)的值域.
设n元齐次线性方程组Aχ=0的系数矩阵A的秩为r,则Aχ=0有非零解的充分必要条件是()
求极限
随机试题
依我国著作权法,将老舍的作品“茶馆”翻译成藏文在国内出版,属于()
《脉经》的作者是
A.0.25GyB.0.5GyC.0.6~1GyD.1.5~3GyE.3.5~6Gy全部骨髓的吸收剂量的阈值剂量为
中东某公司与其招聘的中国籍人杨光签订了劳动合同,合同规定有关劳动争议应适用中东某国法律。依中国的相关规定,下列哪一选项是正确的?()
根据《公路工程抗震规范》,在发展断裂及其邻近地段进行路线、桥位和隧址的布设时,不正确的是()。
编制项目合同编码的基础是()。
根据行政许可法律制度的规定,下列关于行政许可期限或者费用制度的表述中,正确的有()。
生活的真谛是必须()。
首开人类师范教育先河的国家是美国。()
Wheneveryouseetheoldfilm,evenone【M1】______madetenyearsbefore,youcannothelpbeing
最新回复
(
0
)