首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)在点(0,0)处连续,且,其中a,b,c为常数. (Ⅰ)求f(0,0)的值. (Ⅱ)证明f(x,y)在点(0,0)处可微,并求出df(x,y)|(0,0). (Ⅲ)讨论f(x,Y)在点(0,0)处是否取极值,说明理由.
设f(x,y)在点(0,0)处连续,且,其中a,b,c为常数. (Ⅰ)求f(0,0)的值. (Ⅱ)证明f(x,y)在点(0,0)处可微,并求出df(x,y)|(0,0). (Ⅲ)讨论f(x,Y)在点(0,0)处是否取极值,说明理由.
admin
2015-05-07
69
问题
设f(x,y)在点(0,0)处连续,且
,其中a,b,c为常数.
(Ⅰ)求f(0,0)的值.
(Ⅱ)证明f(x,y)在点(0,0)处可微,并求出df(x,y)|
(0,0)
.
(Ⅲ)讨论f(x,Y)在点(0,0)处是否取极值,说明理由.
选项
答案
(Ⅰ)当(x,y)→(0,0)时ln(1+x
2
+y
2
)~x
2
+y
2
,由求极限中等价无穷小因子替换得 [*] 又由f(x,y)在点(0.0)处的连续性即得f(0.0)=[*]=a. (Ⅱ)再由极限与无穷小的关系可知 [*]=1+o(1)(o(1)为当(x,y)→(0,0)时的无穷小量)[*]f(x,y)-f(0,0)-bx-cy=x
2
+y
2
+(x
2
+y
2
)o(1)=o(ρ)(ρ=[*]→0), 即 f(x,y)-f(0,0)=bx+cy+o(ρ) (ρ→0). 由可微性概念[*] f(x,y)在点(0,0)处可微且df(x,y)|
(0,0)
=bdx+cdy. (Ⅲ)由df(x,y)|
(0,0)
=bdx+cdy[*] 于是当b,C不同时为零时f(x,y)在点(0,0)处不取极值. 当b=c=0时,由于 [*] 又由极限不等式性质[*]δ>0,当0<x
2
+y
2
<δ
2
时,[*]>0,即f(x,y)>f(0,0). 因此f(x,y)在点(0,0)处取极小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/UY54777K
0
考研数学一
相关试题推荐
设ξ1=[1,-2,3,2]T,ξ2=[2,0,5,-2]T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是().
设A为3阶非零矩阵,且满足aij=Aij(i,j=1,2,3),其中Aij为aij的代数余子式,则下列结论中:①A是可逆矩阵;②A是对称矩阵;③A是不可逆矩阵;④A是正交矩阵.正确的个数为().
设α,β为n维单位列向量,P是n阶可逆矩阵,则下列矩阵中可逆的是().
设A是主对角元素为0的4阶实对称矩阵,E是4阶单位矩阵,,且E+AB是不可逆的对称矩阵,求A.
设三元线性方程有通解求原方程.
已知β1,β2是Ax=b的两个不同的解,α1,α2是相应的齐次方程组Ax=0的基础解系,k1,k2是任意常数,则Ax=b的通解是().
记平面区域D={(x,y)||x|+|y|≤1},计算如下二重积分:,其中f(t)为定义在(—∞,+∞)内的连续正值函数,常数a>0,b>0;
设平面区域D由x=0,y=0,x+y=,x+y=1围成,若I1=,则I1,I2,I3的大小顺序为().
设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy一y=0和ex一xz=0所确定,求
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用第一问的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
随机试题
参与联合脱氨基作用的酶是
Aseachblackcreature______andflappedawayintothegrayingsky,shewatchedit,tearsinhereyes.
分析所需的资料均来自研究对象的实际治疗方案的成本和效果的是研究结果的外部真实性较差的是
属于按主电路工作方式分类的X线机是
患者,男性,十二指肠溃疡患者,突然发生呕吐,所吐物为昨天吃的食物。引发原因是
公文生效的时间是()。
Americansarepoundoftheirvarietyandindividuality,yettheyloveandrespectfewthingsmorethanauniform,whetheritis;
论述我国中央人民政府和特别行政区的关系。(2013法简32、2017法论37)
Accordingtothepassage,whichofthefollowingisuncommonintheUS?
LookatthestatementsbelowandatthefiveextractsfromanarticleaboutSwindlinginInternationalTrade.Whicharticle(A,B
最新回复
(
0
)