首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=. (1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式; (2)二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=. (1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式; (2)二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?
admin
2016-09-30
93
问题
设A为n阶实对称可逆矩阵,f(x
1
,x
2
,…,x
n
)=
.
(1)记X=(x
1
,x
2
,…,x
n
)
T
,把二次型f(x
1
,x
2
,…,x
n
)写成矩阵形式;
(2)二次型g(X)=X
T
AX是否与f(x
1
,x
2
,…,x
n
)合同?
选项
答案
(1)f(X)=(x
1
,x
2
,…,x
n
)[*] 因为r(A)=n,所以|A|≠0,于是[*]A
*
=A
—1
,显然A
*
,A
—1
都是实对称矩阵. (2)因为A可逆,所以A的n个特征值都不是零,而A与A
—1
合同,故二次型f(x
1
,x
2
,…,x
n
)与g(X)=X
T
AX规范合同.
解析
转载请注明原文地址:https://kaotiyun.com/show/Udw4777K
0
考研数学一
相关试题推荐
设B为n×m实矩阵,且r(B)=n,则下列命题中①BBT的行列式的值为零;②BBT必与单位阵等价;③BBT必与对角阵相似;④BBT必与单位阵合同。正确的个数有()
设A是3阶实对称阵,有特征值λ=3,对应的特征向量为考ξ=[1,2,3]T,则二次型在特征向量ξ=[1,2,3]T处的值
设y=ex为微分方程xy’+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=k∫0xe1-xf(x)dx,其中k>1。证明:存在ξ∈(0,1)使f’(ξ)=(1一)f(ξ)成立。
A=,r(A)=2,则A*χ=0的通解为_______.
设线性方程组问a为何值时,方程组有唯一零解.a为何值时有非零解,并求方程组的通解.
(I)设.问k满足什么条件时,kE+A是正定阵;(II)A是n阶实对称阵,证明:存在实数k,使得kE+A是正定阵.
设α=(1,2,3)T,β1=(0,1,1)T,β2=(-3,2,0)T,β3=(-2,1,1)T,β4=(-3,0,1)T,记Ai=αβiT,i=1,2,3,4.则下列矩阵中不能相似于对角矩阵的是()
设实二次型f(x1,x2,x3)=(x1-x2+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数.求f(x1,x2,x3)=0的解;
设y=y(x)(x>0)是微分方程xy’-6y=-6满足条件y()=10的解.设P为曲线y=y(x)上一点,记曲线y=y(x)在点P的法线在y轴上的截距为Ip,当Ip最小时,求点P的坐标.
随机试题
2岁正常幼儿,其标准身长约为
在此情况下杨某应该如何处理()。如果复议机关以改变原纳税决定为由向茶厂要求缴纳税款,茶厂与杨某的诉讼地位如何确定()。
2008年1月17日,在美英、欧盟等国家的支持下,在俄罗斯等国家的反对声中,科索沃议会举行特别会议,通过了科索沃独立宣言,科索沃宣告独立。2008年1月16日,欧盟27个成员国正式通过向科索沃派驻文职使团的决议,科索沃正式宣布独立后,欧盟使团将在随后的12
下列选项中,()是经营杠杆的关键决定因素。
下列关于企业业绩衡量不同观点的叙述中,正确的有()。
在现代市场经济条件下,企业创造需求的途径是多方面的,包括()。
纸币的发行量取决于()。
【伽利略】(GalileoGalilei,1564—1642)
已知x=5,y=2,z=6。表达式x>yAndz>xOrx<yAndNotz>y的值是()。
He______readingsilentlyatfirst.
最新回复
(
0
)