首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=. (1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式; (2)二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=. (1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式; (2)二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?
admin
2016-09-30
57
问题
设A为n阶实对称可逆矩阵,f(x
1
,x
2
,…,x
n
)=
.
(1)记X=(x
1
,x
2
,…,x
n
)
T
,把二次型f(x
1
,x
2
,…,x
n
)写成矩阵形式;
(2)二次型g(X)=X
T
AX是否与f(x
1
,x
2
,…,x
n
)合同?
选项
答案
(1)f(X)=(x
1
,x
2
,…,x
n
)[*] 因为r(A)=n,所以|A|≠0,于是[*]A
*
=A
—1
,显然A
*
,A
—1
都是实对称矩阵. (2)因为A可逆,所以A的n个特征值都不是零,而A与A
—1
合同,故二次型f(x
1
,x
2
,…,x
n
)与g(X)=X
T
AX规范合同.
解析
转载请注明原文地址:https://kaotiyun.com/show/Udw4777K
0
考研数学一
相关试题推荐
设g(χ)二阶可导,且f(χ)=(Ⅰ)求常数a的值,使得f(χ)在χ=0处连续;(Ⅱ)求f′(χ),并讨论f′(χ)在χ=0处的连续性.
设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则().
设A为三阶矩阵,特征值为λ1=λ2=1,λ3=2,其对应的线性无关的特征向量为α1,α2,α3,令P1=(α1-α3,α2+α3,α3),则P1-1AP1=().
设函数f(x)=∫1xdt,证明:存在η∈(1,2),f(2)=ln2·η
已知函数f(x)连续,且=1,g(x)=∫01f(xt)dt,求g’(x),并证明g’(x)在x=0处连续.
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3),若Q=(e1,-e3,e2),则f=(x1,x2,x3)在正交变换x=Qy下的标准形为().
设函数y(x)是微分方程y’-xy=满足条件y(1)=的特解.求y(x);
设α1,α2,α3均为三维向量,则对任意的常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的().
设A为三阶矩阵,α1,α2,α3为线性无关的向量组.若Aα1=2α1+α2+α3,Aα2=α2+2α3,Aα3=-α2+α3,则A的实特征值为________.
设三阶矩阵A=(α1,α2,α3),B=(β1,β2,β3),若向量组α1,α2,α3可以由向量组β1,β2,β3线性表出,则().
随机试题
A.温中补虚,理气健脾B.温中补虚,和里缓急C.温中补虚,降逆止痛D.温中补虚,降逆止呕E.温中补虚,散寒止痛大建中汤是()
人民调解的基本原则是()
在素质能力测评中,最常使用的差异量数是()。
读下图回答问题。圆圈地区洪灾严重,主要成因是()。
从目的、方式和态度三方面来看,文学的审美意识形态属性表现为_____________、形象性与理性、情感性与认识性的相互渗透状况。
公安行政强制措施,是公安机关及其人民警察在公安行政管理活动中,依法定职权和程序,强制特定的相对人履行某种义务的公安行政执法行为。( )
“白日不到处,青春恰自来。苔花如米小,也学牡丹开。”请结合实际,谈谈你对这首诗的理解。
下列有关生活常识的叙述正确的是()。
下面关于列表框和组合框的陈述中,正确的是()。
______evidencethatlanguage-acquiringabilitymustbestimulated.
最新回复
(
0
)