首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明: (1)存在c∈(0,1),使得f(c)=1-2c; (2)存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明: (1)存在c∈(0,1),使得f(c)=1-2c; (2)存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
admin
2018-01-23
19
问题
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:
(1)存在c∈(0,1),使得f(c)=1-2c;
(2)存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
选项
答案
(1)令φ(x)=f(x)-1+2x,φ(0)=-1,φ(1)=2,因为φ(0)φ(1)<0,所以存在 c∈(0,1),使得φ(c)=0,于是f(c)=1-2c. (2)因为f(x)∈C[0,2],所以f(x)在[0,2]上取到最小值m和最大值M, 由6m≤2f(0)+f(1)+3f(2)≤6M得m≤[*]≤M, 由介值定理,存在ξ∈[0,2],使得[*]=f(ξ), 于是2f(0)+f(1)+3f(2)=6f(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/UjX4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn是取自正态总体N(0,σ2)的简单随机样本,与S2分别是样本均值与样本方差,则()
设二维随机变量(X,Y)的概率密度为求:(I)(X,Y)的边缘概率密度fX(x),fY(y);(Ⅱ)Z=2X一Y的概率密度fZ(z).
某流水线上每个产品不合格的概率为p(0<p<1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为X,求X的数学期望E(X)和方差D(X).
设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{|X一μ|>σ}应该()
设总体X服从正态分布N(0,σ2)(σ2已知),X1,X2,…,Xn是取自总体X的简单随机样本,S2为样本方差,则().
设A=,对A以列和行分块,分别记为A=[α1,α2,α3,α4]=[β1,β2,β3]T,其中≠0①,=0②,有下述结论:(1)r(A)=2;(2)α2,α4线性无关.(3)β1,β2,β3线性相关;(4)α1,α2,α3线性相关.上
A,B,C是二阶矩阵,其中 则满足BA=CA的所有矩阵A=_________.
已知三元二次型f(x1,x2,x3)=XTAX,矩阵A的对角元素之和为3,且AB+B=0,其中 (1)用正交变换将二次型化为标准形,并写出所用的坐标变换;(2)求出此二次型;(3)若β=[4,一1,0]T,求Anβ.
设f(x)、g(x)在区间[一a,a](a>0)上连续.g(x)为偶函数,且f(x)满足条件f(x)+f(一x)=A(A为常数)(1)证明(2)利用(1)的结论计算定积分
假设有四张同样卡片,其中三张上分别只印有a1,a2,a3,而另一张上同时印有a1,a2,a3.现在随意抽取一张卡片,令Ak={卡片上印有ak}.证明:事件A1,A2,A3两两独立但不相互独立.
随机试题
小肠上皮细胞顶端膜上可将寡肽转运入细胞的转运体是
购买写字楼客户的心理特征较住宅有较大差异,主要体现在()。
进行钢结构构件连接作业时,应使用梯子或其他登高设施。当钢柱或钢结构接高时,应设置操作平台。下列注意事项中,错误的是()。
理货备货作业区的面积根据停靠配送车辆的数量及发货量来确定。()
运用“政府职能”的相关知识,简析“看得见的手”在推动供给侧结构性改革中的作用。
“关于作家作品、时代背景的知识,不是文本阅读教学的主体性知识,而是关于文本的背景知识”一句是并列关系复句。()
能够容纳其他控件的控件是容器控件,框架与图片框都是容器控件。下面的叙述中正确的是()。
Althoughofcoursethereareexceptions,itseemsreasonablyclearthatincertaincountries—Rwanda,Somaliaandpartsofthefo
Helikessweetthings,______(特别是巧克力).
A、Districtmanagers.B、Regularcustomers.C、Salesdirectors.D、Seniorclerks.A短文一开始就提到AlexGordon期待与公司区域经理的第一次会议。因此答案为A。B“常客”、D
最新回复
(
0
)