首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=,矩阵B=(kE+A)2,其中k为实数,E为单位矩阵。求对角矩阵A,使B与A相似,并求k为何值时,B为正定矩阵。
设矩阵A=,矩阵B=(kE+A)2,其中k为实数,E为单位矩阵。求对角矩阵A,使B与A相似,并求k为何值时,B为正定矩阵。
admin
2021-01-25
63
问题
设矩阵A=
,矩阵B=(kE+A)
2
,其中k为实数,E为单位矩阵。求对角矩阵A,使B与A相似,并求k为何值时,B为正定矩阵。
选项
答案
方法一:由 |λE一A|=[*]=λ(λ一2)
2
, 可得A的特征值是λ
1
=λ
2
=2,λ
3
=0。 那么,kE+A的特征值是k+2,k+2,k,而B=(kE+A)
2
的特征值是(k+2)
2
,(k+2)
2
,k
2
。 又由题设知A是实对称矩阵,则A
T
=A,故 B
T
=[(kE+A)
2
]
T
=[(kE+A)
T
]
2
=(kE+A)
2
=B, 即B也是实对称矩阵,故B必可相似对角化,且 [*] 当k≠一2且k≠0时,B的全部特征值大于零,这时B为正定矩阵。 方法二:由 |λE一A|=[*]=λ(λ一2)
2
, 可得A的特征值是λ
1
=λ
2
=2,λ
3
=0。 因为A是实对称矩阵,故存在可逆矩阵P使P
-1
AP=[*]P
-1
。 那么 B=(kE+A)
2
=(kPP
-1
+P[*]P
-1
)
2
=[P(kE+[*])P
-1
]
2
=P(kE+[*])
2
P
-1
。 即P
-1
BP=(kE+[*]。 当k≠一2且k≠0时,B的全部特征值大于零,这时B为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/Uyx4777K
0
考研数学三
相关试题推荐
[2010年]设A,B为三阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=________.
[2008年]设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3.令P=[α1,α2,α3],求P-1AP.
[2013年]设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=___________.
[2003年]设三阶矩阵若A的伴随矩阵的秩等于1,则必有().
若DX=0.004,利用切比雪夫不等式估计概率P{|X—EX|<0.2}.
假设随机变量X与Y同分布,X的概率密度为求1/X2的数学期望.
设随机变量X在区间(0,1)上服从均匀分布,在X=x(0<x<1)的条件下,随机变量Y在区间(0,x)上服从均匀分布.求:Y的概率密度;
设α1,α2,…,αs为线性方程组AX=0的一个基础解系.β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数,试问t1,t2满足什么关系时,β1,β2,…,βs也为AX=0的
非齐次线性方程组AX=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则().
设函数F(r)当r>0时具有二阶连续导数,令则当x,y,z与t不全为零时=
随机试题
Ham试验通常用于何种疾病的诊断
某患下肢脊髓灰质炎后遗症的成年男子,40岁,因车祸来急诊室。查体:右膝关节上部明显肿胀,皮下淤血,肢体疼痛,不敢活动,你怎样才能尽快而又简捷确定有无骨折发生
设y=arctanex,则y’=()。
()是使金属在给定环境条件下,发生钝化所需的最小电流密度。
美术课程评价中,应努力体现课程标准的理念和目标,充分发挥评价的()功能。
在现代远程教育工作中,()是基础,是网络教学的基本单元与支撑条件。
全球化成为今天的一个热门话题,并不意味着人们关于它的任何谈论都是合理的或建立在理性分析的基础上。常常出现的情况倒是:一个问题越成为讨论的焦点,人们关于它的谈论就越模糊、越混乱,问题的实质就越容易被疏忽和遮蔽。仅就字面而言,全球化是一个无主语的模糊概念,包含
甲、乙在街头因琐事斗殴,甲感到自己不是乙的对手,转身逃跑,乙紧追不舍。路人丙见状,跑上前想制止乙追打甲。甲误认为丙是乙的同伙,挥棍打丙,致其重伤。在本案中,甲打伤丙的行为在刑法中属于()(2014年一法专一第10题)
一届委员会工作两年,每年都由4人组成,其中2名成员来自下面4位法官:F、G、H和I,另外2名成员来自下面3位科学家:V、Y和Z。每一年,该委员会有1名成员做主席。在第一年做主席的成员在第二年必须退出该委员会。在第二年做主席的人在第一年必须是该委员会的成员。
那个饭店前面排起了长队,看来菜的味道不错。
最新回复
(
0
)