首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
admin
2021-01-19
50
问题
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在点x
0
处的增量,△y与dy分别为f(x)在点x
0
处对应的增量与微分,若△x>0,则
选项
A、0<dy<Ay.
B、0<Ay<dy.
C、Ay<dy<0.
D、dy<△y<0.
答案
A
解析
[分析] 根据几何意义用图示法求解,也可用拉格朗日中值定理,或用泰勒公式.
[详解1] 由f’(x)>0,f"(x)>0知,函数f(x)单凋增加,曲线y=f(x)凹向,作函数y=f(x)的图形如图1-2-2所示,显然当△x>0时,
△y>dy=f’(x
0
)dx=f’(x
0
)△x>0,故应选(A).
[详解2] 根据拉格朗日中值定理,有
△y=f(x
0
+△x)-f(x
0
)=f’(∈)△x,x
0
<∈
0|△x.
因为f"(x)>0,所以f’(x)单调增加,即f’(ε)>f’(x
0
),又△x>0,
则△y=f’(∈)△x>f’(x
0
)△x=dy>0,即0<dy<△y.故应选(A).
[详解3] 由f’(x)>0,f"(x)>0,根据泰勒公式,有
f(x
0
+△x)=f(x
0
)+f’(x
0
)△x+
f"(∈)(△x)
2
>f(x
0
)+f’(x
0
)△x,即△y=f(x
0
+△x)-f(x
0
)>f’(x
0
)△x=dy,又△x>0.故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/V384777K
0
考研数学二
相关试题推荐
设f(x)在[0,+∞)上可导,f(0)=0,其反函数为g(x),若求f(x).
设n为正整数,利用已知公式,In=,其中I*=求下列积分:(Ⅰ)Jn=sinnχcosnχdχ;(Ⅱ)Jn=∫-11(χ2-2)ndχ.
已知三角形周长为2p,试求次三角形绕自己的一边旋转时所构成的旋转体的体积的最大值.
设f(x,y)=2(y-x2)2-x2-y2,(Ⅰ)求f(x,y)的驻点;(Ⅱ)求f(x,y)的全部极值点,并指明是极大值点还是极小值点.
设f(x)具有一阶连续导数,f(0)=0,且表达式[xy(1+y)一f(x)y]dx+[f(x)+x2y]dy为某二元函数u(x,y)的全微分.求f(x);
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,计算f(n)(2).
设A为n阶矩阵,证明:r(A*)=其中n≥2.
设3阶矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解.A=______.
求分别满足下列关系式的f(x).1)f(x)=∫0xf(t)dt,其中f(x)为连续函数;2)f’(x)+xf’(一x)=x.
随机试题
行政征收的实施应以下列哪一项内容为前提?()
李某大学毕业后未找到工作,整天游手好闲。其父多次劝导,反而使其内心愈加扭曲。某日,因其父劝解,引发李某怒火冲天,打伤其父。经依法侦查,检察机关提起公诉,法院受理此案并开庭审理。则对于本案出现下列情形,人民法院处理正确的有:()
幽门螺杆菌根除疗效的监测方法首选
关于老年性阴道炎的临床表现,下列说法错误的是( )。
组织活动中经常出现且需及时调整的问题主要有哪些?
不属于《富尔法案》中提出的法国高等教育改革的三条中心原则是()
下列选项中,表述正确的是()。
Twomonthsago,yougotajobasaconsultantforHumanResourceServiceCompany.Butnowyoufindthattheworkisnotwhatyou
对长度N的线性表进行顺序查找,在最坏情况下所需要的比较次数为______。
某会计网校的刘老师正在准备有关《小企业会计准则》的培训课件,她的助手已搜集并整理了一份该准则的相关资料存放在Word文档“《小企业会计准则》培训素材.docx”中。按下列要求帮助刘老师完成PPT课件的整理铹作工作。将第1张幻灯片的版式设为“标题幻灯片”
最新回复
(
0
)