首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
admin
2021-01-19
28
问题
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在点x
0
处的增量,△y与dy分别为f(x)在点x
0
处对应的增量与微分,若△x>0,则
选项
A、0<dy<Ay.
B、0<Ay<dy.
C、Ay<dy<0.
D、dy<△y<0.
答案
A
解析
[分析] 根据几何意义用图示法求解,也可用拉格朗日中值定理,或用泰勒公式.
[详解1] 由f’(x)>0,f"(x)>0知,函数f(x)单凋增加,曲线y=f(x)凹向,作函数y=f(x)的图形如图1-2-2所示,显然当△x>0时,
△y>dy=f’(x
0
)dx=f’(x
0
)△x>0,故应选(A).
[详解2] 根据拉格朗日中值定理,有
△y=f(x
0
+△x)-f(x
0
)=f’(∈)△x,x
0
<∈
0|△x.
因为f"(x)>0,所以f’(x)单调增加,即f’(ε)>f’(x
0
),又△x>0,
则△y=f’(∈)△x>f’(x
0
)△x=dy>0,即0<dy<△y.故应选(A).
[详解3] 由f’(x)>0,f"(x)>0,根据泰勒公式,有
f(x
0
+△x)=f(x
0
)+f’(x
0
)△x+
f"(∈)(△x)
2
>f(x
0
)+f’(x
0
)△x,即△y=f(x
0
+△x)-f(x
0
)>f’(x
0
)△x=dy,又△x>0.故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/V384777K
0
考研数学二
相关试题推荐
设f(x,y)=2(y-x2)2-x2-y2,(Ⅰ)求f(x,y)的驻点;(Ⅱ)求f(x,y)的全部极值点,并指明是极大值点还是极小值点.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex。求曲线y=f(x2∫0xf(-t2)dt的拐点。
求微分方程y"+2y’+y=xex的通解.
已知A,B是反对称矩阵,证明:AB一BA是反对称矩阵。
已知曲线L的方程367(1)讨论L的凹凸性;(2)过点(一1,0)引L的切线,求切点(x0,y0),并写出切线的方程;(3)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.
设A为三阶实对称矩阵,其特征值为λ1=0,λ2=λ3=1,α1,α2为A的两个不同特征向量,且A(α1+α2)=α2.(Ⅰ)证明:α1,α2正交.(Ⅱ)求AX=α2的通解.
设二阶常系数微分方程y〞+ayˊ+βy=γe2x有一个特解为y=e2x+(1+x)ex,试确定α、β、γ和此方程的通解.
设F(x)=∫xx+2πesintsintdt,则F(x)()
[2008年]已知函数f(x)连续,且=1,则f(0)=___________.
随机试题
氧气瓶阀、氧气减压器、焊炬、割炬和氧气胶管等严禁沾染上易燃物质和油脂。
A.X染色体长臂末端(Xq28)B.X染色体长臂末端(Xq26~q)C.12好染色体短臂末端D.13好染色体短臂末端E.14好染色体短臂末端
下列哪项不是咀嚼效率的影响因素()
聚酰胺柱色谱分离下列黄酮,最先出柱的是
试件的留置,应在混凝土的()随机取样制作。预拌混凝土进入施工现场后,应在见证人员见证下,由总承包施工单位和预拌混凝土供货单位相关专业技术人员共同取样留置。
采用预算单价法编制设备安装工程概算的条件是()。
期货投机与套期保值的区别在于()。
相比于优先股,普通股具有的特征为()。
下面关于USB和IEEE-1394的叙述中,错误的是______。
Anotherculturalaspectofnonverbalcommunicationisonethatyoumightnotthinkabout:space.Everypersonperceiveshimself
最新回复
(
0
)